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FINITE INSEPARABILITY OF SOME THEORIES OF
CYLINDRIFICATION ALGEBRAS

STEPHEN D. COMER?!

An elementary theory T in a language L is (strongly) finitely inseparable if the
set of logically valid sentences of L and the set of T-finitely refutable sentences are
recursively inseparable. In §1 we establish a sufficient condition for the elementary
theory of a class of BA’s with operators to be finitely inseparable. This is done
using the methods developed independently by M. Rabin and D. Scott (see 16])
on the one hand and by Ershov on the other (see {2]). Our condition applies, in
particular (see Corollary 5), to the class of all cylindric (polyadic) algebras of
dimension & (1 < & < w). As a consequence of finite inseparability we obtain the
undecidability of the elementary theories of each of the classes of algebras listed in
Corollary 5. For various classes of cylindric algebras the undecidability was first
established by Tarski (cf. [4]) who obtained in certain cases the stronger conclusion
that the identities holding in the classes are recursively unsolvable. An interesting
feature of the proof presented here is that it does not use diagonal elements, which
play a central role in Tarski’s proof. In §2 we make some observations concerning
the decision problem for cylindrification algebras of dimension 1.

The author wishes to thank Professor Donald Monk for his valuable suggestions
concerning the preparation of this paper. In particular, the formulation of the
Rabin-Scott method presented below was partially adopted from a course given
by Professor Monk at the University of Colorado.

§0. We assume as known the basic notions of logic. For concepts related to
decision procedures the reader may consult the survey article [2]. By a language L
we mean a first-order predicate calculus with equality containing only a finite
number of nonlogical constants. A theory T in L is a logically closed set of sen-
tences of L. If T'is a theory in L, we denote by T4, the theory of all finite models of
T; a sentence of L is T-(finitely) refutable if it fails in some (finite) model of T.
For a formula ¢ of L with free variables included among v, - - -, v, -1 and a struc-
ture % of the appropriate type, we denote by ¢* the n-ary relation {x e "4: x satis-
fies ¢ in 2} induced on 2A.

We now describe the Rabin-Scott procedure for establishing finite inseparability;
a version of this procedure formulated in terms of undecidability and for a language
with just one binary predicate is given in Rabin [6].

Let L, and L, be languages, where we assume the only nonlogical constants of
L, are predicate symbols. A translation of L, into L, is a pair (0, f) where 0 is a
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formula of L, with only one free variable v, and f'is a function mapping the set of
predicate symbols of L, into the set of formulas of L; such that if P is an m-ary
predicate symbol of Lo, f(P) is a formula of L, with free variables among vg, - - -+,
U1 The function f extends to 4 function f* from the set of formulas of L, into
the formulas of L, in the natural way-—the quantifier Vo, is handled by relativizing
to 6(v) (cf. 8, p. 24]). Since L,, L; contain only a finite number of nonlogical
constants, /" is effective.

If B is an L; structure and 6® is nonempty we define B;, as the L, structure
(6%, Rp)pes where S is the set of nonlogical constants of L, and for each m-ary
predicate symbol P, R; is the restriction of f(P)® to ™(6%). The following fact about
translations (6, f) of L, into L, is basic: suppose B is an L, structure, ¢ a formula of
Ly and x € ©(6%), then

1 x satisfies o in By, iff x satisfies £+ () in B.

Let L¢ be the language obtained from the language L by adjoining a new indi-
vidual constant ¢. For a structure % of L and x € 4, we denote by A(x) the structure
of L¢ obtained from % by interpreting ¢ as the element x.

The following theorem which is due to Rabin and Scott is essentially a reformu-
lation of Theorems 1 and 2 of [6] (cf. Theorem 3.3.2 of [2]) into the context of finite
inseparability.

THEOREM 1.  Suppose T is a finitely inseparable theory in a language L all of whose
nonlogical constants are predicate symbols and K is a class of L, structures. Further,
suppose (0, f) is a translation of L into L,° and the following condition holds:

(My) for every finite model % of T there is a finite B € K and b e B such that
B, =~ W

Then Th (K) is finitely inseparable.

ProoF. We define a recursive function g from the sentences of L into the sen-
tences of L, as follows: for a sentence ¢ of L let g(¢) = Yu,,(Ive(8(vo))’ — (f*(#))")
where a primed formula is obtained from the unprimed one by substituting the
least variable, v, not occurring in 3v,0(ve) — f *(¢) for the individual variable ¢ in
the unprimed formula. Using (1) we can easily verify that the function g has the
following two properties:

(a) if ¢ is a logically valid sentence of L, then g(¢) is a logically valid sentence
of Ly;

(b) if ¢ ¢ Tin then g(4) ¢ Th (K)gn.

The theorem follows from (a) and (b).

When a theory T and a class of L, structures K, related as above, satisfy the
condition (M,) we will say that the pair (7, K) satisfies (M).

Suppose K, and K, are classes of algebras of similarity types ¢ and = respectively.
We say that K is equationally definitionally embeddable (¢.d.e.) in K, if, for each
o-ary operation in the language of K, there is a o;-ary polynomial ¢ in the language
of K, such that if % = (4, g)iepmn: € K1, then the algebra A* = (4, ,")icpmns € Ko
where #,* is the o;-ary operation induced on % by #. Let K;* = {4*: W € K,}. For
a formula ¢ let #* be the formula obtained from ¢ by replacing every o,-ary opera-
tion symbol g, in the language of K, occurring in ¢ by the corresponding term .
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The following lemma is quite useful.

LemMma 2. Suppose K, and K are classes of algebras of similarity types o and =+
and formulated in languages L, and L, respectively. Assume that K is e.d.e. in K,
and (8, ) is a translation of L into the expanded language Ly°. If we define 0" = 07
and the function ' on a predicate symbol P of L by f'(P) = f(P)', then

() (0, 1) is a translation of L into L,°; ‘

(i) if T is a theory in L for which (T, Ki*) satisfies (M), then (T, K,) also satis-
fies (Mo); .

(iii) if T'is a finitely inseparable theory in L for which (T, K;*) satisfies (M), then
Th K, is also finitely inseparable.

Part (i) of the lemma is obvious; part (ii) holds since (x),* = A(x), for A € K;
and x € 4. This fact is easily proved by a standard induction argument on formulas.
Part (iii) is immediate from (ii). ,

By the theory of two disjoint equivalence relations we mean the theory which has
two binary relation symbols R and S as its only nonlogical constants and the fol-
lowing axioms:

VooVu,(v = vy <> VoRU, A 0oSDy)
VooV, Yoo(v3 Rvg A U2RVg —> 04 RYy)
Yoo Vo Yoo (06501 A 06SVg —> 0250;).

The following unpublished result of M. O. Rabin and D. Scott will be useful in the
following section. »
THEOREM 3.2 The theory T of two disjoint equivalence relations is finitely in-
separable. '
Proor. Let T, be the theory of an irreflexive, symmetric, binary relation Q;
by an appropriate modification of the proof of Theorem 6 of [6] (cf. Theorem 3.3.3
of [2]) it follows that T is finitely inseparable. Let 6(v,) be the formula Yo, (v, S0, <>
vy = vg) and f(Q) the formula Fv,dvs(veRvy A v,Svs A v3Rv,). Then (6,f) is a
translation of the language L of T, into the language of T. For Theorem 3 to follow
from Theorem 1 with K equal the class of models of T it suffices to show that
(T, K) satisfies (M,). Let U = (4, Q) be a finite model of Ty; let B= QU
{(x, x): x e A} and define B = (B, R, S) where, for all (x, y), (u, v) € B,
(x, MR, v) iff x = u,
(x, S, v) iff (x,) = (W, v) or (x =vand y = u).

Now B is a finite model of 7 and % = B, where the desired isomorphism #4 is
defined for all x € 4 by hx = {(x, x)}.

§1. For an ordinal number « a cylindrification algebra of dimension « is a struc-
ture A = (4, +, -, —, 0, 1, ¢o)c<q such that 0, 1 € 4, —, ¢, are unary operations
on A, +, - are binary operations on A4, and the following conditions hold in % for
allk, A < ¢ and x, ye 4;

2 The proof of Theorem 3 given here was presented by Professor Scott in a course at the
University of California in 1963 and is included with his permission.
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(co) the structure (4, +, -, —, 0, 1) is a BA;
(c1) 0 =0;
(02) X = CiX5
(Cs) Czc(x’ clcy) = X C)s
(co) cxlaX = CrCeX.
We denote the class of all cylindrification algebras of dimension « by Cy,. For
an ordinal « and a nonempty set X, Iet (e, X) denote the Cy,

(S(QX)a U, N, ~, 0, wX’ C;c);c<¢x
where, for Ye S(*X), ie.,, Y € *X, and « < « we define
C.Y={fe*X:forsome gc ¥, fi =g forallica ~ {«}}.

As an extension of the terminology of [4] we call subalgebras of W(ee, X) cylindri-
fication set algebras (a CyS,) and a subdirect product of CyS,’s a representable
cylindrification algebra (a RCy,).

We consider the following condition on a class K of BA’s with operators which
is e.d.e. in Cy,. '

(Hy,) Foreveryi < wthereisan algebra % € K such that %,* = A, X;) for some
nonempty set X; and for all i < j < o, | Xj] < |X)] < w.

We now prove the main theorem of this note.

THEOREM 4. For 1 < o < w if K is a class of BA’s with operators e.d.e. in Cy,
such that (Hy) holds in K, then Th K is finitely inseparable.

ProoF. Suppose « is fixed, 1 < « < w, and K satisfies our hypothesis. Let
Ly(L,) be the language of K(Cy,) and L,°(L,°) obtained from Ly(L,) by adding a
new individual constant ¢. Let T be the theory of two disjoint equivalence relations
Rand S. By Theorem 3 T'is finitely inseparable. In view of Theorem 1 and Lemma 2
it suffices to show there is-a translation (0, f) of R, § into L,° such that (T, K*)
satisfies (M,). The translation (8, f) is given by:

0: vy is an atom and v, < ¢,
SR 0(ve) N 0(v1) A (covo = Covy)s
JS:0(we) A 8(v1) A (et = c109).

Suppose A = (4, R, S) is a finite model of T, i.e., R and S are equivalence rela-
tions on A4 such that for x, ye 4, if xRy and xSy, then x = y. Suppose the R-
(equivalence) classes are R; for i < n and the S-classes are S, for i < m. Set B =
A, X;) where r is the least s such that max {m, n} < |X;| and U(e, X,) € K*.
Choose a one-one function /% from max {m, n} into X, and define the function k&
from 4 into *X, by letting kx = (I, hy, ho, - - -, ho) where i and j are the unique
natural numbers such that x € S; N R,. Define gx = {kx} for x€ 4 and let b be
the range of k. It is easy to verify that g is an isomorphism of % onto B(b);, L the
language of T. Thus (M,) holds and the proof of Theorem 4 is complete.

We now give the more important classes K to which the previous theorem applies.
The notation is from [4].

CoRrOLLARY 5. Th K is finitely inseparable for each of the following classes K:

(i) Cy, and RCy, for 1 < a < w;
(i) C4, and RCA, for 1 < « < w;
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(iii) (representable) polyadic algebras of degree o for 1 < « < w;

(iv) (representable) polyadic algebras of degree o with equality for 1 < « < w;

(v) (representable) relation algebras;

(vi) projective algebras.

_ That the classes of algebras in (v), (vi) satisfy the hypothesis of Theorem 4 is
proved in [5, p. 135, p. 938]. As an immediate consequence of Corollary 5 we

obtain

COROLLARY 6. If K is one of the classes listed above, then Th K and (Th K)y, are
undecidable.

If K is one of the classes in 5(ii), 5(@iv), or 5(v), the undecidability of Th K is due
to A. Tarski.

If we relax our notion of language in order to allow us to speak about algebras
with countably many operations, a version of Theorem 4 still holds. Call an ele-
mentary theory T in L R-inseparable if the sets of logically valid and T-refutable
sentences of L are recursively inseparable. Theorem 1 may be modified to obtain
the conclusion that Th K is R-inseparable if condition (M) is replaced by the
condition (M;) obtained from (M,) by removing the stipulation that 9B is neces-
sarily finite. Clearly, Lemma 2 carries over into our more general context where,
in conclusion (ii), (M,) is replaced by (M;). The proof of Theorem 4, for ¢ = w,
can now be repeated verbatim to prove that Th K is R-inseparable. Consider the
following condition on a class K of BA’s with (at most countably many) operators
which is e.d.e. in Cy,:

(H;) There is an algebra % € X such that A* = A(«, X) where X is infinite.

The above and an obvious modification of the proof of Theorem 4 yields:

THEOREM 7. For 1 < o < wif Kis a class of BA’s with (at most countably many)
operators e.d.e. in. Cy, such that either (¥,) or (H;) holds in K, then Th K is R-
inseparable.

CoroLLARY 8. If K, is one of the classes listed in 5(i) to 5(iv) then Th (K,) is
R-inseparable and hence undecidable.

Again, in the case of CA4,’s (RCA,’s) the undecidability was first proved by
Tarski (see [4]). In view of the fact that the finite CA4,’s are just the discrete CA,’s
(essentially BA’s), (Th CA,)u, is decidable; hence finite inseparability fails in
case ¢ = w,

§2. In this section we draw some conclusions related to the decision problem for
Cyy’s (essentially the class of C4,’s) using standard methods. For a class K of
Cy,’s we denote by Simple K, 4¢X, (P,K)PK, and Ky, the classes of simple alge-
bras of K, atomic algebras of K, (finite) direct products of members of K, and finite
algebras of K, respectively. We begin with a few observations.

(¢))] Th (Simple Cy;) and Th (Simple 4¢Cy,) are decidable.

The formula (x =0 A y=0) v [1(x =0) A y = 1] serves as a possible
definition of cox = y; hence (1) follows from the decidability of the theory of
BA’s (cf. p. 20 of [8] and [7]). We may clearly extend Tarski’s characterization
[7] of the elementary types of atomic BA’s to a description of the elementary types
of simple atomic Cy;’s.
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3] Th (Simple Cy, i) = Th (Simple 4Cy,).

The nontrivial part of (2) holds since any simple atomic infinite Cy, is elemen-
tarily equivalent to an ultraproduct of simple finite Cy,’s. As a consequence of
(D), (2) and the result of Feferman and Vaught [3] that if a class K of algebras has
a decidable theory, then so does the class P,K, we obtain the following theorem.

THEOREM. Th (Cy1:n) = (Th Cyy)ay is decidable.

We conclude by showing that Th (Cy; ¢1,) is the same as the theory of all complete
atomic Cy;’s (i.e., Th (Complete 4¢Cy,)) and is hence decidable. In view of the
inclusions Th (Cy; i) 2 Th (Complete A¢Cy;) = Th (P(Simple A¢Cy;)) it suf-
fices to show that Th (Cy, »,) = Th (P(Simple 4¢Cy;)). By Theorems 6.7 and 6.8 of
[3], Th (P(Simple A¢Cy,)) = Th (P,(Simple 4¢Cy,)); hence we only need to show
that Th (P/(Simple 4¢Cy;)) = Th (P,(Simple Cy111n)) (=Th (Cy111n)). The non-
trivial part of this equality is proven similar to (2) once we observe that two finite
products 2 and B of Simple AzCy;’s are elementarily equivalent iff for each ele-
mentary type K of Simple A¢Cy,’s % and 9B have the same number of simple
factors in K. Thus we conclude that Th Cy, 4, = Th (Complete 4¢Cy,).

Actually there is a larger class of Cy,’s which has a decidable theory, namely, the
class of all reduced products of Simple Cy,. (This is immediate from Ershov’s result
in [1] that if a class K of algebras has a decidable theory, then so does the class of all
reduced products.) The author has obtained examples to be published later showing
that this theory is different from Th Cy, and, in fact, showing that the class of
Cy,’s elementarily equivalent to reduced products of simple Cy,’s is indeed very
meager. This contrasts with Ershov’s result [1] that every BA is elementarily
equivalent to a reduced power of the 2-clement BA.
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