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SOME REMARKS CONCERNING THE VARIETIES GENERATED BY THE
DIAMOND AND THE PENTAGON (')
BY
S. D. COMER AND D. X, HONG

ABSTRACT. In 1945 M. P. Schitzenberger exhibited two identities, He as-
serted that one provided an equational base for the diamond M, and the other a
base for the pentagon NS' Recently Ralph McKenzie produced another equa-

tional base for NS' In the present paper the authots modify McKenzie’s idea
to verify Schiitzenberger’s assertion for M3. They also show Schutzenberger’s

claim about 1V5 is false.

Iniroduction. In this note we make some observations based on the preceding
paper [2] by R. McKenzie. In ST we modify the ideas in $2 of McKenzie’s paper
to obtain analogous results for ®M3, the variety of lattices generated by the dia-
mond. In particular, we provide a proof of the result announced by Schiitzenberger
(3] that OMS is characterized by the single identity:

xely+zewro))=xely+rzdex(yrzo) 4 xze(wt+o)
Qo

+xu s (z 4 yv) + xv o (2 + yu).
This fact also follows from the much stronger results of Jénsson [1]; however, our
proof of this result, like McKenzie’s proof that certain identities characterize
ONi’ is model-theoretic in nature while Jénsson’s results involve deeper lattice
theoretic techniques.
In the article cited above, Schitzenberger also asserted without proof that the

variety @NS generated by the pentagon is characterized by the identity:

xely+zews )l =x. (oy+ 20+ x0 (y+ xz0) + 5« (xy + 20)

B.

+x e (y+xz0) + 2z« (xzu + ) + xz « (w+ xz0).

In §2 of our note we observe that B holds in some lattice not contained in ONS;
thus 3 does not characterize ®N5' Equational bases for @NS have been found
by McKenzie (see [2]).
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stimulating conversations concerning the questions considered here and in partic-

ular Professor McKenzie for making available an early version of his results.

L. Following McKenzie, a special term of type one (an ST1) is any lattice
term of the form p - (0 + 7) where p, 0, 7 are each products of variables. A term
in the dual form is called an ST2. McKenzie proved that for any STI v and ST?2 o
the inclusion v < ¢ (called a special inclusion) either holds in every lattice or
else implies (modulo lattice theory A) the modular law. We will modify McKenzie’s

proof to show the following.

Lemma 1.1. Every special inclusion ¢ either holds in all modular lattices or

else implies (modulo N) the distributive law.

If @ is any equational theory we write o Sg7instead of 0 <7 €@ and 0~y 7
in place of 0 =1 €@. The equational theory of modular lattices is denoted by M;
distributive lattices by A. The following is an analogue of McKenzie’s Lemma
2.2.

Lemma 1.2. For each term o, there are finite, nonempty sets of terms F . and
F, such that

(i) Fy consist of STY’s v satisfying v <, 0; moreover ¢ = % Fre®,lal;

(ii) F, consist of ST2’s b satisfying o Sy @ moreover o= F, € @l[a].

As an application of Lemmas 1.1 and 1.2 we prove a characterizes ®M3‘
Theorem 1.3. @)M3 = ®l[a]'

As an elementary application of the model-theoretic ideas to be used in the

proof of 1.3 we first give a simple proof of the following well-known theorem.

Theorem 1.4. The variety of lattices generated by the two element chain is

the class of all lattices satisfying the distributive law x + (y + z) = xy + xz.

Proof. Clearly the two element chain satisfies the distributive law. Since
the distributive law is self-dual, it is easily seen that from this law and A every
term is equivalent to a term 201. where 0, is a product of variables and also to a
term HT]. where 7 is a sum of variables. Thus, every lattice inclusion v < ¢ is
equivalent to a conjunction of inclusions of the form o <7 where ¢ is a product
and 7 a sum of variables. Now, an inclusion ¢ <7 of this form will either hold in
every lattice or fail in the two element chain depending upon whether or not some
variable occuring in 0 also occurs in 7. Thus, every identity holding in the two
element chain follows from the distributive law and A,

In view of McKenzie’s Lemma 2.1, our Lemma 1.1 and the above proof every
special inclusion is either a lattice identity or equivalent to the modular law, dis-

tributive law or x = y. This fact was also observed independently by McKenzie.
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Proof of Theorem 1.3. From Lemma 1.2 it follows that modulo @, [a] every
equation satisfied by the diamond M, is equivalent to a conjunction of special
inclusions. Such a special inclusion does not imply the distributive law; thus,
by Lemma 1.1 it belongs to M. It is easily seen (and we will prove later) that a
implies the modular law; thus, @M3 €O, o]

It remains to show that @ holds in M, which we do directly. Suppose the
variables x, v, 2, u, and v are, respectively, assigned to elements %', y', 2, u’
and v in M,. The right (resp. left) side of & is then assigned to an element RS
(resp. LS) in M;. By modularity each summand on the right side of @ is contained
in LS; hence it suffices to show LS is always a sum of elements on the right.
Whenever u' and v' are comparable or one of x', y', z' € {0, 1}, LS < RS is easi-
ly checked. Now assume u'and v’ are incomparable and x', y', 2’ ¢ {0, 1}. Since
u'+v'=1, it suffices to show

RN AN B e E AN (AN e IR (A
v’z G ey D) @y ).
Moreover, we may assume that x', v, z' are mutually incomparable; for if y', z'
are comparable then x'+ (y'+ 2" ) =x". (y'+ 2'u") + x"2"and, if x" is compar-
able with y' or =z, then
xey 2N = xy e x e e G 2 ) e
by modularity. Thus, there are only three remaining cases: z'=u' z'=v,
ix', vV =1{u', '} In the first two cases x'+ (y '+ 2) = x"- (y'+ 2'¢") + &’
«(y'+2"v") while in the last case x'+ (y'+ z") = x'u" . (2" + y' v )+ x"v" . ("4
y'u'). Hence, in every case LS < RS completing the proof that o € ®M3.
Proof of Lemma 1.1. Let € be any special inclusion
prlotn<e+ -y
which fails in some modular lattice. For any term 7, let 70 denote the set of all
variables occuring in 7. We wish to show that A < ®l lel. The proof is exactly
the same as the proof of Lemma 2.1 in McKenzie’s paper except for the last case
where the sets pO N qﬁo, poﬂ g[/o, 0N (;50, N XO,' and 6°N ¢ 0 are empty while
the sets por‘l XO, 0N L/fo, and 0N gz‘)o are nonempty. Suppose that, in addition,
%N XO # 0. The assumption that various sets of variables are nonempty implies
(modulo A) the inclusions 0 <y, p<x>7< ¢, and 0 < . Hence, M implies
pelorn)<x - (x e dp+i)=xep+x+¥<h+ Xy contrary to our assump-
tion that ¢ £ M. Hence, 0N XO = 0 and in this last case the following five sets
are pairwise disjoint:
pOm XO? 00m¢0’ 7_00(//0,
(1) (%= xD U= y® U - ¢,
(%= 0D U= Ulx®-pO.
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Choose three distinct variables v, v;, v, not occuring in ¢. Replacing the vari-
ables in the five sets listed in (1), respectively, by v, vy, Vo Vg + Uy + Uy
v vy - v, and all remaining variables by v, we see that v « (1/1 + vz) Svy+ vy,

belongs to @l[é]- Since this inclusion fails in both M; and N, it implies the

distributive law; thus, A C @Z[e] as desired. ’
Before proceeding with the proof of Lemma 1.2 we need to derive several con-
sequences of &, namely, @, —a,.
apxelyrurv)=xGr)ex-ly+o)+x-(ut),
oy xy 4+ zu={x+zu) s (y + z0) « (z 4+ xy) » (w + xy),
a, GCal) sty Grw =ty -G+ ty-lz+0) (vt 2+ w),
+utz-(y+v))extv+z.0y+ ),
a, (=ad) ) rd=xzrdey - Grdez. Gry)bu- ey
For the remainder of this section we let & = @l[a]. We first observe that the

modular law belongs to ® since
x (24 yx) ~y xx e (24 () - x)gex- (yx + 2+ (x+x))§A yx + zX.

Actually, the modular law is equivalent (modulo A) to the inclusion RS < LS, .

Substituting « + v for z in @ gives a, € B. Obviously LSOL2 <4 RSaZ. Now,

RS, ~ Wy + za) » 2+ 2yl « [ + 20) « w4+ xy],
2
~ (xy + zu + y2) « (xy + zu + ux),

~u LS, + ux. (xy + zu + yz),
2

and

ux-(xy+zu+y2)’\»a ux-(xy+Zu)+ux-(xy+yz)+ux.(Zu+yz)
1

where each of these three terms are obviously SA LS, . Thus a, € ®. By dual-
2

ity o, €® once we have shown a, € 0.

It is easily seen that LS <um RS, ; to illustrate we check the fourth factor
on the right side: LS, Sp Xt (y + uv) 3(z + uv) VIR LR (y + wv) Sp X+
u + 2{y + v). It now remains to show RSCL3 Se LSaa. Let y be the product of the

last four terms on the right side of a ;- Then
RSa3 NV ryD ey oy by G v yz e (s oxw) -y (y + x2).
Clearly y « (x + yz) < LS, ; we consider each of the remaining terms separately.
3
Case 1.
yu oyt xz) vy uely+x2) e ot ylz+0) s xrz v w) s vtz (y+ w)

SGLS%%—BI+82+33+84
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where

p=usly+x2) - (x4 yo) (x + 2 + uv)y

y=uy - Fe ) v zrw) vz (y+ ),

s=us(yexa) ez (yex) orvralys 1) <y LS%,

4 u-(y+xz)-1/§ex+y‘(z+uv):LSa3.

Now, &, SV (yv + x « (xy + x2)) + (x + 2 + uv) <o LSa, * 8,y + 8y, where &, =
u(yv+ xy) e &+ 2+ w) and 312 =u-+(yv + x2) « (x + z + w). It is easily seen
that each 8” <o LSa3 by applying @, to 511, and then M and @ to each summand

not obviously <-LS, . Hence, &, So LSa - Also,
3 3

82'»M ay  (z+ ) +x - (z+)) (xvv+2z.(y+ )
<o LSa3+yu-(xv+z+uv)(x+v+z-(y+ u))
~ LSa3 tyu (zrvle+ w) (kv v+ z.(y+ )

)
~y LSa, s (zy+ @+ )z 4 vx)

Sy LS, vyu-lzron) (xrvtze(y+ )
3

<o LSa3 +yulz (y + @)+ vx) + yu - (v + x) (7 + vx).

Each of these two summands are easily seen to be <o LS, by applying @ and M

where appropriate. Thus, 52 <o LS(13 and hence yuly + xz) <o LSaa.
Case 2, .

yy « (= + u)'vMy-(z+uv+x-(z+u))-(x+ye(Z+U))

cxrutrzo(y+o) or vt 2y + w)

+6

a

3 1

SQLS +0 5
where
Slzy-(z+uv+xu)-(x+y(2+u))°(x+u+z-(y+v))(x+v+z-(y+u))
and

S =yulv + 2) o (xtyz+ ) wrvrze s ) <, e (y + xz) <o LS%.

Now,
51"\4My-(Z+u-(x+uv))(x+y-(z+v))

crrurzo (e o) orveze(y+w)

<o LSOLS +0,,+0,,
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where

Siy=y - Grud) ey - Gro) Grurz (y+o) - rvrz.(y+w)

and
Sy, =yu-(x+ uv)-(x+y-(z+u))§Ayu-(y+xz)§eLSa3.
Now,
511 Se LS% #0111+ B+ By
where
8=y Grud wry) x+usz-(y+0)),
5112:y(z+ ue) (z+ ) w+u+ 2y + )« (x + v+ 2ly + u),
O 3=y (e uw) v uvz (yro)) < 04y
Now,

3111'\JM}"(UX+Z-(x+yv))-(x+u+z-‘(y+y))

ge LSa3+yv~(z+ux)s(x+u+z-(y+v))

where the last term SAyve (y + x2) Se LS, by Case 1 with » and v permuted. A

similar argument shows 0,,, <o LSas, Hence, yy - (z + ») <o LSOLB.
Case 3.

ve oyt axw) vy 2o (yrx)  ery (e o) v utz-(y+v)

59L8a3+81+82+53

where 8, =z - {y+ xu) (x + yv) - (x+ut 2 (y+0), 6, =2-(y+x0) - (y + x0),
and 53:2-(y+xu)-v-(y+zx)-‘(x+u+z-f(y+v))§M LS, .

3
Now,

51«:Mz-(yv+x-(y+xu))-(x+ u+z-(y+v)

<o LSa3+z-(yv+xu)-(x+u+z-(y+v))

~u LSa3+z- (xu+yu~(x+u+z- (y + o))
<o LSa3+511 + 8y, + 0,
5=

and313:z-(y+v)- (yv—kxu)va

a _?

where 511 =z (u+ yv -« (x + 2) SG LS, + zu- {yv + x) <y LS

fo AR

z (e + ) Gy + xuz + (y + ) <y LS
z+ (yv+ xu - (y + v) 5915a3 + 2+ (yv + xvw) <o LSa3 since z « (yv + xuv) e ¥t
yulz + uv). Hence, 51 Se LSaa. Now,

52 NM Z e (y+xu . (y+x1))) g(‘)LSCL3 + Z s (y+xuv) —<-9LS(13
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as with ;. Hence, yz - (y + x) So LSa3'
Case 4,
y oo ot yu) vy 6+ yw) (i y o (24 0)
2zt w) xrveze(y+ )

§0L5a3+51+52 +8,+9,

where 8; =(x +yu) - (x+yv) - (x4 2+ w)y Sy=y - (x+yw) (z+0) - (v + 2+
w) - rvezly+a)), d,=z-erydy+a) wrvrz - (y+a) §, =

velx+yw)y + x2) « (x + 2 + w). Now,

Oy~ (X+yu)-(x+y1/a(x+z+uv))’va+yv(x+yu)-(x+Z+uv)§Ax+84

and &, <o LS, (fori=2, 3, 4) follows from Cases 2, 3, and 1 respectively with
variables u and v interchanged. Hence, y « (x + yu) <o LSOL3 completing the proof
that a, e@l[a].

Proof of Lemma 1.2. We only prove (i); (ii) follows by duality. The proof is
only a slight modification of McKenzie’s proof of Lemma 2.2. Let F (resp. G),
with or without subscripts, always denote a finite, nonempty set of ST1’s (resp.
ST1’s and terms of the type {+ o, where { and o are products of variables).

First, note that given F, we can find a G with % G hey S Fandx+-32F ~e
2{x - ¢: ¢ € Gl. Indeed, by @,

x»ZFmez{x‘(¢o+¢1):¢O’d)1€F}

and each ¢+ ¢; <y X F. By several applications of a: if ¢, =+ (0, + Kip)s
then (where K, A, & range over {0, 1})

# e dg+ by Ne,‘:‘):,;)x'(éo'UOK'+ vy )+;X"‘€K'((’Ko+a
tx0 Gy 0y 0y (oggr gy

2
) N }jsx.am.(g“gl%.a

Py Kloa * Otk

)

K1

+I§ X e alK 00)\ o (01 1ok ® Co+é'1 . OO lw)\)'

G is a subset of F together with the above five types of ¢’s associated with pairs
b Py in F. We need only check that for each of the types of elements ¢ de-
scribed, ¢ pey 2 F. For ¢ a member of F or one of the first three types above it
is obvious that ¢ < X F. Suppose =0y, - 0g,+{oy | o+ 0y ),
i.e., is of the fifth type. Then

¢§A(ooo+om) . (01 1eic " Go+ & e (ogg+0,)) SO 1ok Con logg+ 00 + ¢,

Therefore,




52 S. D. COMER AND D. X. HONG [December

b Sy oyt &+ ‘?’o K 24 (org+ 01 (& + g oo+ o)
Sy by by < 2 F

Thus, ¢ < 2 F. For ¢ = Ty (CK + &yt Oy 1ox Tk s) of the fourth type

a similar argument shows
P Sy Skt (OKO + UKI) + élmK PO ks (UKO + UKI) SPpt Props Z F.

This completes our preliminary remarks. (i) is proved by induction on the forma-
tion of terms. The only nontrivial part of the argument is the passage over prod-
ucts: assume that o, ~o 2 F, and 3 B, <u %« (for k = 0, 1) and consider

04+ 0,. Bythe above we have sets G, G, such that

0 1°

040y m92{00a¢1:¢1 EGI§MGZ§¢O~¢II¢1 € Gy, g€ Gyl

where each term ¢+ ¢, <, 04+ 0. Thus, it only remains to consider the simple
terms ¢ - ¢,. Suppose ¢, =, (0, o+ 0, ) for k= 0, 1. We apply a,, @, and
then a repeatedly as in the construction of G above to see that ¢y '¢h; is
equivalent modulo ® to sums of ST1’s of the type that occur-in (2). Repeating our
previous argument shows that, for each such STl v, v <, ¢, - ¢, and hence
v <y Og+ 0, as desired. This completes the proof of Lemma 1.2.

The following corollary which is an easy consequence of Lemmas 1.1 and 1.2

was suggested to us by Professor McKenzie.

Corollary 1.5. An inclusion o <1 is valid in M, iff every special inclusion
v < b, for which v <, o and v <\, b, is provable in M.

2. We will now show that Schiitzenberger’s identity 3 does not characterize
@NS. Since B is rather complicated it is useful to observe that it is equivalent to
the following two identities:

By x - y+z)=xeloy+z)+xelysxz),

By xeway (usrv) =xy (ut o) #xLyutw)+xGuew)

The identity 8, is just McKenzie’s 7,; 3, is the dual of 7,.

Suppose O is the lattice given in Figure 1. Observe that Q, is subdirectly

irreducible, self-dual and has a nontrivial automorphism ¢. Our results are based

on the following lemma,
Lemma 2.1. B, holds in Q5.

As a consequence of this lemma, Q3 gives a counterexample to Schitzen-

berger’s claim.
Theorem 2.2. The identity f3 holds in Q, but O, is not a member of @NS.

Proof. That Q3 £ @NS is mentioned in McKenzie’s paper. For a short direct
proof we need only observe that McKenzie’s identity 7, x - (y+u) (y+ o)<

P (y+ wuv) + xu + xv, fails in Q3 when f, e, g and b are assigned to x, y, u, and v
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respectively. The fact that (3 € @Q5 follows from Lemma 2.1, the self-duality of
Q, and the remark that f3; € @l[ﬁg] To see that 3, is a consequence of A and
,8‘;, x+wly+w)=(+y+u) x+wsly+ @) » (x 4w+ (y + ), we first ob-

serve

) w~(x+y)§d.x+w-(y+-xw).
£2

This follows from ,8021 by setting # = x and v = w. Thus,

welsyr D) ex-(rad)~ ey e 2 eyl exc(yez)n jaely+2)
By By

where the last equality holds by (1).

Proof of Lemma 2.1. Suppose the elements ',y w', u', and v'in Q3 are
substituted for the variables x, y, w, v and v in 8, respectively. The left (sim-
ilarly, the right) side of f3, is assigned the value LS (similarly RS). Tt is obvi-
ous that RS < LS; thus, it suffices to show LS is always equal to a sum of the
values on the right. This is obviously true if either w ">ylorw' >u'+ v'or '

'
and v are comparable. We assume
! ¢ ? P P 1 ! .
) w iy, wpu+v ,and v and v are incomparable.

In view of the automorphism ¢ and the fact that LS < RS whenever w' €10, 11,
it is enough to show LS < RS whenever w' efa, [y gs €5 clo T w' is incomparable
with «"+ v', then either w'=aand ' +v'=borw'=gand u'+v' €le, bl In
the first case either «'=horv'=h so LS:x'zx'of(ylu'+w')+x'- W'v' +w')
in the second, if »' +v',y' €1{1, b, b} then LS = x'=x' e+ w') +
x'-(y'v' +w') and if either u'+v' =eory’ €la,f, e, d}, LS = x'a =
x'eGlu v w)rx" (y'v  +w'). Hence, we may assume
(3) w'<u'+vv'.

If w'<y',theny - (u'+2)>w'so LS=x"y + (u'+ v"); hence, we may
also assume

(4) w'and y' are incomparable.

From (2), (3), (4) it remains to consider four cases

6.1 w'= a, y' elb, bl w' v v’ = 1,

(6.2) w'e i/, el y': gs wrv' € {1, a, bi,

6.3) w'=g, y' €lf, e, b, b, db, '+ €ell, al,

6.4) w'=c, y' €ld, b}y u'+v' €11, a, b, el ‘

To illustrate, we consider (6. 4). If '+ v ela, el, either v’ or v’ belong to
{d, e, f}; thus, LS=x"ve=x"+(y'u'+ w) + 5"+ (y'v' + w'). On the other hand,
ifuw'+v'e {1, b}, either u' or v'belongs to {6, b}; so either y'- w' = y' or y' cp'=

y'. Thus LS=x"- (w'+yV=x"+ (y'u"+w) +x"- (y'v'+ w') as desired. The
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other cases are, likewise, easily checked. We conclude that LS < RS, and hence

B,, always holds in Q5.

Figure 1
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