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Restricted Direct Products and Sectional Representations®
By Sreraex D. Comer of Nashville

(Bingegangen am 30. 7. 1973)

Abstraet. A construction of restricted direct product decompositions is given.
It is based on the general algebraic theory of sectional representations agsociated
with Boorean algebras of factor relations. Restricted direct product decom-
positions of an algebra 4 are shown to correspond in a one-one way with certain
BooLran structures of factor relations on 4.

The technique of obtaining a sectional representation of an algebra from a
Boorman algebra of factor relations has become standard (see Bibliography of
[4)). The results in this paper are motivated by the belief that this framework is
suitable for constructing and comparing different types of product representations
of an algebra. We test this belief on the product notions due. to HASHIMOTO,
the restricted direct products. We use this notion because it is general enough to
include both weak and strong direct products as well ag various intermediate
product notions. One of our objectives is to show that every restricted direct
product can be obtained (up to equivalence) from a sectional representation
associated with a suitable BooLran algebra. Another goal.is the characterization
of the Boowrnan algebra structures that correspond to restricted direct products.

In section 1 we review the basic construction of sectional representations.
In section 2 we discuss restricted product decompositions, their equivalence, and
agsociate a Boorman algebra B, of factor relations on A4 with a restricted product
decomposition i of 4. The clags of B, s is characterized in section 4 while in section
3, we show that & can be recovered from #,. The net effect of this is that an equi-
valence class of equivalent restricted product decompositions of A corresponds
to a certain BooLman structure and this correspondence is one-one. In section 5
the correspondence is applied to direct product decompositions.

1. Sectional representations

The construction of a sectional representation of a universal algebra given
in Comer [1] is outlined below.

* T'his work was supported by a grant from the Research Council of Vanderbilt University.
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Suppose 4 is an algebra and @ = (B, -, -, 0, 1) is & Boorzan algebra (BA).
We call & a BA of factor relations on A'if B is a set of factor relations,
0=1Id,, 1-=42 ‘

and - is the intersection of congruence relations. 1t is not necessary to assume -L
agrees with the lattice sum in ©(4) nor that % consist of all factor relations on A.
We say that B is a strong BA of factor relations on A if, , in addition, + is the
relative multiplication of congruences.

The Standard Construetion. Suppose 2 is a BA of factor relations on A.
Let X be the Stone space of %, 1. e., the set of all maximal ideals of % with the
usual topology. For 2 € X let A(z) = U « (equals the congruence relation gene-
rated by x) and let S, denote 4/i(x). Let S be the disjoint union of the sets
S,(x € X). For notational convenience we identify (@, a/A(x)) with a/i(z) in the
formation of the disjoint union. Define m: S — X so that (a/A(x)) = =. For
@& A define the auxiliary map 7, X — 8 by r,(z) = a/A(z). We make § a
topological space by using {r,(U):a € A, U open subset of X3} as a basis. The
topology produced will be the finest one making all the functions r, continuous.

An isomorphism % : 4 = ['(X, S) where (X, 8) is a sheaf is called a sectional
representation of A.

Theorem. The (X, S, #) constructed above is asheaf and the map Eﬂ L,
is a sectional representation of A onto I'(X, S). Call & 2 the canocical representation
associated with the BA B. i

The above theorem will be applied insituations where -2 is a complete atomic
strong BA of factor relations on 4. Throughout the paper, when dealing with
such a2, certainletters will have the following fixed meaning. Of course X denotes
the Stone space of B and S denotes the sheaf over X constructed above in the
standard way. Let J be the set of all isolated points of X; for 2 € J, x is the
principal maximal ideal of B generated by the dual atom A(z). For ¢ € 7,
Nip)={MEX:9& M} and J(p) = {ME€ J: @€ M}. Of course N(p) is a
basic open and closed set used to define the topology on X. The J-operation is
related to the closure operation on' X; the closure ¥ of ¥ & X is

Y={MeX: M2 T}

In case 2 is complete and atomic there is a natural isomorphism between

P(J) and 5. Explicitly, » is defined for ¥ < J by

(V)= — N A(Y).
Observe that since every element in % is the meet of all dual atoms containing
it, also »(Y) = N A(J — ¥). This observation will be used several times.

2. Boorean algebras induced by restricted produet decompositions

First we recall the definition of an L-restricted direct product due to Hasmi-
Moro [3]; ¢f., also GrATzZER [2].

F
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Definition 2.1. Suppose L is an tdeal in the BA P(I) and A; are algebras for
1€ I. An algebra A" is an L-restricted direct product of (4;: 4 € I) if
(i) 4" is a subalgebra of [ [ A,
i
Qi) f, g€ A implies {4 € I: f(3) == g(@)} == D ([, 9) € L,
(i) f€ A", g€ Iy 4;, and D(f, g) € L implies g & A"

4%is [ A, and L == 8, (I), 1. e., the ideal of all finite subsets of I, in which
i€l

case the L-restricted product 4" is the weak direct product of (4;: 1€ I). In the

following only product notions intermediate to the weak and strong direct

products are considered. That is, we usually assume L 2 8, (). 1t is known that

this assumption can be made without loss of generality ; sce GrRATZER [2].

An L-restricted product decomposition of A is an isomorphism h: A4 = A4’
where A4’ is an L-restricted direct product of (4,: ¢ € I).

Qur first goal is associate a BA of factor relations with an L-restricted product
decomposition. This is done by considering various restricted products formed
from a given one.

For U & Ilet Ly = {K (\ U: K € L}. Bquivalently, Ly, = {K S U: K€ L}.
Clearly, Ly is an ideal in P (U).

Suppose A’ is an L-restricted direct product of (4,:4 € I). For U & I, define

rg: A7 [[A; by
i€t
re(f) =/t U.
The image A}, — 7, (A’) of 4’ is easily seen to be an Ly-restricted direct product
of (A,:1€ U). As a convention we let A7 be @ one element algebra if U = 0.
For U & I'let ry X r;_ 4 be the unique homomorphism, '

ry Xyt A A X ATy,
defined for f&€ A" by
ry X 1 y(f) = g (f), v u ()
Lemma 2.2. For U C 1, ry X 15yt A = A X A _y.

Proof. It is easily seen that the map is one-one using 2.1 (ii). Now suppose

Dy=D(firy(e) €L and Dy= D(g,r,_y(e) € L,
we have D(f U g, ¢) = D, U Dy€ L. By 21 h€ A" and vy X 7;_y(R) = (f, g) as
desired.
Remark. If L = P(I), then Ly = P(U); so A% is also a full direct product.
If L =8,(I), then L, = S, (U) and Ay is again the weak direct product in
this case.
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Suppose h: A = A" where A’ is an L-restricted direct product of (4,: 1€ I).
Yor U < I, define
Py = ker(r;_yoh)

It is wuseful to observe that &, = {{a,b)€ A2 h(a) 1 L — U = h{b) t I — U}

Theorem 2.3. The collection {9,: U < I} of factor relations of A forms u BA
under relative multiplication and intersection. In fact the map p: U > 9y is an
eptmorphism of P (I) onto this BA. p is an tsomorphism if each A, is nontrivial and
L 28, ).

Proof By 2. 2,9,is a factor relation on A. Clearly 9y = Id, and 97 = 42
It is straightforward to verify

(1) for U,V I9gNdy=">3p,v-
We show
(2) for U, VEILOy|0y=">30uy.

It is immediate ‘that 9y |9y S 95yy. Now suppose (a,b) € 94, . Let
k== (h(a) t L —U)U (h(d) t U) € Il A; and choose eC A. By 2.1 (ii),
D (h(e), h{a)) € L and D (h(e), h (b)) € L. Iteasily follows that D (h(e), k) € L and
50, by 2.1 (ili), k€ A". Hence, k = A(c) for some ¢ € 4. Using the facts that A («a)
and h(c) agree on I — U, h(a) and h(b) agree on L — (U U V) and that & and
h(b) agree on (I — V) U, it follows that a ¥, c 9y b. Thus (a, b) € B, | Dy as
desired.

Each 9, has & complement, namely ¥,_,. This, together with (1) and (2),
implies {9,: U & I} is a homomorphic image of the P(I) and a BA under
relative multiplication and intersection. :

Now suppose S,(I) & L and each A; is nontrivial. If 0 == U & [, choose
i€ U,e€ A and define f, g€ [] A; so that D (h(e), f) == D (h(e), g) = {i} and

i€l
f(i) == g(i). Since S,(I) < L, D (f, g) = {i} € I and therefore (f, ¢) € 9. Hence
Py == Id, and p is one-one.

Let B, denote the BA{d,: U & I}; we call it the BA of factor relations of A
associated with the L-restricted product decomposition b of A. From now on we only
consider L-restricted product decompositions in which all 4’s are nontrivial.
By 2.3, whenever L, 2 S, (1), u: P(I) = 4,.

We need some additional properties of the BA 7.

Lemma 2.4. Suppose I is an ideal in P{) with L 2 S, (1) and h: A = 4’
where A is an L-restricted product of nontrivial algebras A;. Then, for every x € X
(the Stone space of B = &,) if © 22 (L), then A(x) = A2

Proof. The map u'from 2.3 gives an isomorphism between P([) and J,.
Using u a maximal ideal M of B, yields a maximal ideal x ' (M) of P(I) and an
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ultrafilter ¥ = {U & I:9;_,€ M} on I. The ultrafilter # induces a congruence
relation ~, on A, where, by definition,

~p = {(f ) E A X AEE L) — g} € F}
= ([ €A x A D(f, 9) € u” (M)}

Using the definition of (M), properties of ¥, and #, and the definition of
~ , it follows that b (A(M)) = ~p for every maximalideal M of B,. Now suppose
a maximal ideal M has the property that u ' (M) =2 L. For f,g€ A7, 2.1 (ii),
implies D(f, )€ L S u (M) so f~zg. Hence ~,= 4" X A" and since
~p = h(AM)), A(M) = A? as desired.

Lemma 2.5, Suppose L is an ideal in P (I) with 1, 2 S,y and h: 4 = A" .

where A" is an L-restricted product of nontrivial algebras A;. Then for every v'C p (L)
and every f €1 A, [} f@)/A3) == 0.

E€J(— @)

Proof. Assume o € u(l), say yp = 9y and fE€7CT 4. The set 4 (J(— )
consists of all dual atoms containing — y = #;_,. In view of the isomorphism g,
(1) A (=) = {9, i€ Uy

Using (1), f induces a function f€Y A ; namely, for i € U,
J@) =1 A7)
Choose k€ A" and define k€ [] 4, by

i€l
10 if ¢ U
km'%mmmwieu

Clearly D(k, k)  U. Also, yp = 9,5 € u(L) so U € L and, hence, D(k, k) C L.
Consequently, 2.1 (iii) implies £ € A", Choose @ € A such that h(a) = k. Now,

(2) forall x2C J(— ), a/i(x) = f(x)/A(x}.

Let @ C J(—w). By (1), A(x) = ¥, _; for some unique j € U. Also note that
J() = f (@) from the definition of £. Hence, h (@) (§) = k (§) = (J (1)) (5) = 2 (f(x)) (j);

which proves (2). The conclusion of 2.5 follows immediately from (2).

The properties of the B A associated with % are summarized below.

Theorem 2.6. For each [L-restricted product decomposition A of A4 with
L 2 S, (I) (and nontrivial factors) there is associated a B A % and-ideal K of &
with the properties: '

(1) 2 is a complete, atomic strong B A4 of factor relations on 4,

(2) for x € X, 2 2 K implies A{x) == A2,

(3) for every p € K, every f€7CP A4, [N f(i)/A(1) == 0

1E€JS(~ ¢
(4) for every x € X, x 22 K implies x € X( p—) J.

Proof. Let B == B, and K = u(L). Parts (1), (2), (3) follow from 2.3, 2.4, 2.5

respectively. (4) is an immediate consequence of L 2 8, (1).
22 Math. Nachr, Bd. 64
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If & is a weak direct product decomposition of 4, i.e., L = 8, (I}, K consists
of all finite sums of atoms and thus, {x &€ X:2x 2 K} consist of exactly the
nonisolated points of X. If & is a (strong) direct product decomposition of 4,
i.,e., I = P(I), then K = % so {x € X:x 2 K} is empty.

Theorem 2.6 holds without assuming L 2 &, () and all factors are nontrivial.
The idea is to let I” == {7 € I: A, is nontrivial and {¢} € L} and &’ = r, o k. Then
WA =1 (A)where b (A)isa L,-restricted product of (4;: ¢ € 1. But L;, =2 S(I")
and each A, is nontrivial for ¢ € I”. If ¢/ is the isomorphism from 2.3 associated
with 2" and U < I, then p(U) = w (U ) I’). As a consequence of this, p/: P(I”)
=B, =B, and w(l) = 1 (L) Thus, 2.6 (1)—(4) still hold.

In 3.6 we will recapture h from #,. For this we need to know when two
decompositions of 4 are essentially the same.

Suppose h: A = A" and #": A = " where A’ is an L-restricted direct product
of (A;:4€ I) and €” is an L -restricted direct product of (0;:i€ I"). We say h
and b’ are equivalent if there exists a bijection k& between I and I” and isomorphism
my: Ay = Ohy (0 € I) such that the induced isomorphism m = Il m: [] 4,

T
el jel’
= [] C; has the property mo h = — I, For the record, m is defined forf € [ [ 4,

Jjer el
and ¢ € I by the condition:

Also observe that the condition m o h = I/ implies m: 4" = C" and k(L) = L.

Theorem 2.7. If h and I’ are equivalent restricted product decomposilions, then

By = By
Proof. ¥or U & I define my = [[m;: [ A, — [] C; analogous to m.

€U icU Jjer(U)
Because of the coordinatewise definitions of both m and my, it is easily
geen that
(1) ryy m(f) = my (ry(f)) forall f€ [J A, and U1,

€7

From (1) it easily follows that C} ., is the image of 47 under the isomorphism
my. Also, from (1) and the definition of equivalence the following diagram

commutes.

h - /
Y Py TN Ry

Nlm lmz—u
r
Lk Oy

(h, B’, m, and m, _, are isomorphisms.)
Hence, ker (r;_y o h) = ker(rp. 4y &) so the B A" s B, and 4, comclde
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3. Canonieal restricted product decompositions

In this section we exploit the sectional representation construction in Section 1
to obtain restricted product decompositions. The idea goes as follows: suppose
B is an atomic strong B A of factor relations on A;nowleth = r;o &:4 — [ S,

€S
where & Vs A = I'(X, 8) is the canonical sectional representation of 4 induced by
& and r; is the homomorphism which restricts a continuous section to a function
on the set J of isolated points of X. Since B is atomic, J is dense in X and thus
h is one-one. In this case h: A == h(A) where h(A) is a subdirect product of the
stalks S,, € J. In 3.5 we see that for certain BA’s & there is an ideal L in P (J)
so that the above h(4) is an L-restricted direct product of (S,:2 € J). The
desired BA’s are characterized by conditions 2.6 (1)—(4). :

Before proceeding we need some auxiliary facts. In the following lemmas we
assume that 4 is a complete atoric strong BA of factor relations on A. These
lemmas establish connections between the topology on X, subsets of J, and ele-
ments of A&. In addition to the terminology from section 1, we also need the
following notation. For f, g€ I'(X, 8), let E(f, g) = {x € X: f(») = ¢g(2)} and
D(f,9) = X — E(f,g"). We use the same notation for elements of

vy (DX, 8)s B, g') = {=€ J: f (x) = ¢" (0)}
and D(f,q) =J — B(f,g") for f', 9 € r,(I"(X, 8)). It will be clear from the
context which is meant.

Lemma 3.1. For a subset U of J, U is a clopen subset of X ; in fact,

J=N(—na10).

Proof. Since 1(U) is a set of dual atoms of B, » = N A(U) € A. For 9 € 5,
€ U iff 9 is contained in every member of 2(U) and this is equivalent to
9 < o == A(U). Thus, N U is the ideal in & generated by y. Now z € U means,
by definition, that » =2 N U and, by the statement above, this is equivalent to
p € a. This last condition is equivalent to x € N (— v).

Lemma 3.2. For a subset U of J, U = J (N A(U)).

Proof. Clearly U & J (N 4(U)). Suppose i€ .J (N A(U)) and i & U. Then
NAUYE 4 and A(2) € A(U). Thus, — A(@) < A(y) for all j€ U and, therefore,
— A1) = N A(U) < A(i) which is a contradiction.

Lemma 3.3. Suppose f, g € I'(X, S), f = 1,(f), 9" == r,(g). Then

Yy B(f,g) = N(p) where o= NAD({, ¢).

) B(f.9) & B, 9).

Proof. (i): by 3.1 and the fact that — N A E(f", ¢") = . (i)). E(f, g) is an
open subset of X. For z € E(f, ¢g), there is a clopen neighborhood N of x with
N S E(f ¢),say N = N(p). By3.1landthefact N A J(— ¢) = — ¢, Niﬁj = N.
Thus, N=NNJ S E(f,q)NJ = E(f,¢9)s0ox€ E(f,g) as desired.

99%
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Lemma 3.4. Same hypolhesis as 3.3 and, in addition, suwppose L is an ideal in
P(Jyand @ == N A D(f, ¢). Then the following are equivalent:

i)y D g el

(i) — @ € »(L)

(iii) every maximal ideal contuining v (1) belongs to N (p).

Proof. (i) & (ii). By the definition of ¢ and », » (D(f’, ¢") = — ¢. Thus,
D(f,g)e L"iff — ¢ & v(L).

(ii) = (iii) is obvious. (iii) => (ii) since » (L") is the intersection of all maximal
ideals containing » (L").

Theorem 3.5. If R is @ BA and K is anideal in 5 with the properlies 2.6 (1)—(4),
thew h = ryo & A = h(A) where h(A4) is an L-restricted direct product of (S, :x € J)
Jor some L in P(J) with L 2 S (J). Actually, v(L) = K where v s the natural
isomorphism v: P(J) == B from section 1. For B and K with 2.6 (1)—(4), we refer
to the above construction as the canonical restricted product decomposition of A
associated with (B, K).

Proof. Suppose & and K satisfy the hypothesis. Ifrom 2.6 (1) and section 1,
v: P(J) = B. Let L be the ideal in P(J) such that »(L) = K. We are to verify
that 47 = h(A4) satisfies the conditions in 2.1 for (S,: x € J). Clearly 2.1 (i) holds.

Next we check 2.1 (ii). Suppose 7, ¢" € A”. Choose f, g€ (X, S) such that
ri(f) = f and 7, (g) = ¢".Condition 2.6 (2), 3.3 (ii) and 3.3 (i) give » (1) & #([, 9)
- lb(f g’) = N (p) where ¢ = N A D(f,¢"). From 3.4 we conclude D(f",g") € L.
and, thus, 2.1 (ii) holds. T

For 2.1 (iii), assume f' € A", g€ [[ S, and D(f’, g) € L. Choose f€ {'(X, S)
xeJ
such that 7, (f) = f. Let ¢ = A D(f",¢). By 3.4, — ¢ € K since D(f,g")CL.
We are going to apply 2.6 (3) with y = — ¢.

For each j€ J(— v)=J(p), ¢ (j) € S; = A/A(j). By the axiom of choice
choose g7 €70 A such that ¢"(§) = ¢ (§)/A(j) for every € J(p). Applying 2.6

(8) with — ¢ and ¢, there is an a € 4 such that a/A(§) = g (j)/A(j) = g"(j) for
every j € J(¢). Thus, §(a) T (@) =g P JS{p). ‘
Define g as g = (f I N{p)) U (5 a) PN (— ). g€ I'(X, S)since both f and

&(a) belong to I'(X, H)

,,)yo. (),N( )i LA
Thus, N(p)y J = H({f,q¢
= D(f’, ¢"). Now,

(f )mdbv&l with U = D(f, 9", N (-(p)x[)(f q).
i’ and N(— @) J = D", ¢). Also, by 3.2, J(¢)

i) =gt = (fLE 9)) UE@)t D g7)
= (f L E(f ) U DU g0)
— {/’,

Since g € I'(X, 8), 9" € A and so 2.1 (iii) holds.
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Hence, h(4) = A" is an L-restricted direct product of (8,: z € J). The proof
of 3.5 is completed with the observation that 2.6 (4) implies L =2 8, (/).

We conclude this section by showing that every restricted product decompo-
sition can be produced by the method of 3.5. ' ‘

Theorem 3.6. Suppose L 22 S, (I). An L-restricted product decomposition h of A
is equivalent to the canonical restricted product decomposition of A associated with

(B, 1 (L)). ‘

Proof. Suppose h: 4 = A" where A" is an L-restricted direct product of
.
Since g1 P(I) ==&, and v: P(J) =4, there is a natural one-one map &k of [
onto J. This is defined as follows. For ¢ € [, let k(i) = j where j is the principal
maximal ideal generated by the dual atom p(f — {i}). Also, recall, u(I — {i})
== 7_y = ker(ry, o h). From these definitions and the fact that A, = 4, we
see there are natural isomorphisms m, for 1€ [:

my Ay = Aly = Aju(d — {i}) == AJA k(1)) = Sy

A direct definition of m;: A, = 8}, is given by m; (h(a) (3)) = a/A (k(i)) for all
at 4.

Hence, m (h(a)) (k1)) = m; (h(a) (1)) = a/A (k@) where m = [] m; (see

iel

definition of equivalent), ¢ € 4 and ¢ € 1. Thus, mo h = 2" where I/ == ryo & is
the canonical restricted product decomposition of 4 associated with (B, u(L)).
Thus, & and 2" are equivalent.

4. Charaecterization resulfs

The previous sections dealt with connections between restricted product
decompositions of an algebra and BA’s with distinguished ideals. Now we put
them together.

Prior to 2.7 we defined the equivalence of two restricted product decomposi-
tions of A4; let [#] denote the class of all decompositions equivalent to A, Let
/L((?’K) denote the canonical restricted product decomposition of A associated
with (7, K). We say that an L-restricted product decomposition & of A is nontrivial
it L 2 8,() and each 4, is a nontrivial algebra.

Theorem 4.1. There is a4 one-one correspondence between the equivalence classes
of nonlrivial restricted product decompositions of A and pairs (B, K) of BA’s with
distinguished ideals salisfying 2.6 (1)—(4). The correspondence [h] = (B, n (1))
is the map one way and ils inverse is (B, K) [h( B, 1()]'-

Proof. By 2.3, 2.6, and 2.7 [h] +> (B, 1 (12)) is a well defined function between

the sets involved. By 3.5 (4, K) + [h(o@ K)] ig defined and 3.6 says it is onto (or

equivalently, [k] = (&, u(L)) is one-one). It remains to show [A] +> (B, ¢ (11)
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is onto. It is enough to assume (%, K) satisfies 2.6 (1)—(4) and show the pair
associated with h( P10 is (A, K). Let B, denote the BA of factor relations as-
sociated with A == /7/( B Since both 7 and &, are complete atomic strong BA’s
of factor relations to show & = &, it is enough to show they have. the same dual
atoms. The set of dual atoms of B is {A(i): i € J} while the set of dual atoms of
By s {0y i€ J}
Now, fora, b€ 4 and 1 € J,
(@, 0) € Dy it D (h(a), (D) & J — {3}

iff A(a) (9) = h(b) (¥

iff a/A(3) = b/A(3)

iff  (a, b) € A(1)
Thus, 9;_; = A(i) and, therefore, B = J7,.

Now, u (from 2.3) and » are both isomorphisms from P(J) onto &, = 4 which
agree on the dual atoms since &, _,;, == A(i). Thus, p = » and therefore K = u (L)
ag desired.

If we fix the product notion under consideration, i. e., consider only a “fixed”
L, then reference to the ideal K disappears from the characterization and we are
left with correspondences between decompositions and certain BA’s. We give
such specializations for weak and strong direct products.

Theorem 4.2, There is a one-one correspondence befween equivalence classes of
nontrivial weak direct product decompositions of A and complete, alomic sirong

1 where K is the

The correspondence takes [h] — B, and its inverse B [:h( 2.1
7

ideal of all finite sums of atoms in 5.

Proof. It is enough to verify that the correspondences induced by 4.1 behave
properly. For [i] — &, this follows from the remark following 2.6. Now, suppose
4 is a complete atomic BA of factor relations on 4 such that A(x) = A2 for every
nonisolated z € X. Let K denote the ideal of all finite sums of atoms in &. It is
enough to show that (B, K) satisfies 2.6 (1)—(4). Notethat {x € X0 2 K} = X —J
s0 2.6 (4) holds; also, 2.6 (1), (2) clearly hold by hypothesis. For ¢y € K, — o is a
sum of a confinite set of atoms. Thus, J(— y) consist of a finite number of
isolated points and hence 2.6 (3) holds. We are finished by 3.5.

Theorem 4.3. There is a one-one correspondence between equivalence classes of
nontrivial (strong) direct product decompositions of A and complete alomic strong
BA’s B of factor relations on A with the property: for every f €7 A, () f(i)/A(i) = 0.

et

The correspondence is given by [L] — B, and ils inverse is given by B [h( 2 ﬁ)]'
Proof. It is enough to see that the correspondences in 4.1, when restricted
map objects where they belong. For a nontrivial direct product decomposition
hy (L) == 7 8o 2.6 (3) holds with ¢ = 1; thus, &8, has the desired properties. It
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remains to show that (7, K) satisfies 2.6 (1)-—(4) where & has the properties
“above and K = %. By the choice of K, 2.6 (2), (4) hold vacously; 2.6 (1) is clear
and 2.6 (3) follows easily from the assumptions about 8. By 3.5 the proof is
finished.

5. Direct produets

Tn the preceding sections an elaborate framework was developed for discussing
and comparing various types of decompositions of an algebra. In this section
notions are specialized to direct product decompositions in order to use the
correspondence in 4.3 to gain insight into properties of direct products. Proofs
will be omitted since they are easy and in many cases just a translation of facts
between two isomorphic posets.

A result of Brrrmorr-HasaiMoro see [3]) characterizes divect product de-
compositions of an algebra 4 in terms of special sequences of congruence relations
on A. In terms of this characterization two direct product decompositions are
equivalent (in the sense defined prior to 2.7) if and only if the two corresponding
sequences of congruence relations are the same. Likewise, the other properties
considered below such as the refinement property and the unique total de-
composition property also correspond to the strict formulation in terms of
congruence 1'elabion<‘

Let F(A) = {#: B is a strong BA of factor relatiom on A} and let ¥ (4)
= {BC ,F ):ﬂ is complete, atomic and 0 == 1) f(¥) for all f&” A},
ies

Both F(4) and F,(A4) are posets under the subalgebra relation and F(4) & #(4
as posets. Actually, F(A4) is somewhat nicer than F (4) in general. F(A4) is
always an ()-semilattice with 0. Of course F (4) = F (A4) if 4 is finite.

Let D (4) = {[h]: h is a nontrivial direct pmduct decomposition of A}.
Suppose h: A = ]7/1 and B': A N[] C; are direct decompositions of 4. We

say that 2" is a mfmemeni of b if there is a k from I’ onto I and for each ¢ € [
there are isomorphisms m;: A, = [] C; such "“that moh=1~" where
ycw(i)

m == H "y, H A, = [7 C;. Refinement is a quasi-ordering of decompositions
and mduces a partial ordermw on D (A): [h] = [h] it 1" is a refinement of k.
When D,(4) is considered as a poset it is with thhs partial ordering.

Theorem 5.1. The bijections between F (A) and D, (4) from 4.3 are iso-
morphisms of posets.

Corollary 5.2. A has the strict refinement property if and only if ' (A) is direcled.

Recall that a direct product decomposition h: A = [[ A, s mml 1f each 4, is
directly indecomposable.

Theorem 5.3. If h: 4 = [[ A, is total, then B, is maximal in F(A).
T

The following is a consequence of 5.3 and 35.1.
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Corollary 5.4. (1) The isomorphism D (A) = F,(A) gives a one-one correspon-

dence between total decompositions of A (md maximal elements of F (A). (2) 4

mazximal element in F (A) is also maximal in F(A4).

Let us reexamine the isomorphism #, (A4) = D,(4). It involved two steps.
First, & € F,(4) was associated with a sectional representation 5{7}: A =1'(X,8).
Secondly, 5( g Was associated with a direct decomposition by composing it with
a restriction }nap. Now the first construction can always be made for any B € F(A)
while the second cannot. Actually the bijections between D, (A4) and F (A)in 4.3
can be reformulated to give a correspondence between direct product decompo-

t)
gitions and certain sectional representations; namely, b ¢ R (A similar re-
n

formulation can be made for 4.1.) ,

The above remarks and 5.4 mggest the following definition. A sectional
reprcsent@tlon 5( A =1'(X,8) is tolal if & is a maximal element of F(4).
Jorollary 5. hows that a divect product decomposition of 4 into indecomposable
factors gives rise to a total representation. However, for infinite algebras, total
direct product decompositions may not exist. In contrast to this a Zorn’s lemma
argument shows that total sectional representations always exist.

Knowledge of the relationship between maximal elements of F (S) and F_ (A4)
should help explain the pathologies concerning the existance of total direct
product decompositions.

An algebra A is said to have a unique total decomposition (in the strict sense)
i 4 has a total direct product decomposition and any two total direct decomposi-
tions are equivalent (i. e., give the same element of D, (A ))-

Let F' R(4) denote the set of all factor relations on 4.

Theorem 5.5. T'he following are equivalent.

(i) 4 has a unique total decomposition,

(it) I (A) has a top element,

(i) F R(A)& F(A4), i.e, FR(A) is a complele, atomic strong BA and

0= N[0 /)u ) for alleJA
€

Corellary 5.6. For A finite, A has a unique total decomposition if and only if
FR(A)is a strong BA.

The two results above are related to results of Tarsk1 [5] (see Appendix B).
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