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Monadic algebras with finite degree

Stephen D. Comer

Abstract

A monadic algebra A has finite degree n if A/M has at most 27 elements for every maximal ideal
M of A and this bound is obtained for some M. Every countable monadic algebra with a finite degree
is isomorphic to an algebra I'(X, .S) where X is a Boolean space and S is a subsheaf of a constant
sheaf with a finite simple stalk. This representation is used to prove that every proper equational class
of monadic algebras has a decidable first-order theory.

Monadic algebras were introduced by Halmos [3]. The notion coincides with that
of one dimensional cylindric algebra. Relevant definitions are given in Section 4.

Several representations of monadic algebras are known. For example, the cy-
lindric representation theory yields representations as subdirect products of set al-
gebras and the cylindric duality theory yields representations as sectional structures
of sheaves. The main result, Theorem 8.1, establishes a new representation for count-
able monadic algebras with finite degree. In terms of sheaves the result stated that a
certain dual sheaf is isomorphic to a subsheaf of a constant sheaf with a finite simple
stalk. In non sheaf language, the result says that a countable algebra with finite degree
can be represented as an algebra of special continuous functions. A detailed formula-~
tion is given in 8.3.

The importance of the type of representation developed is due to its relationship
with decision problems. A method that establishes decidability using such representa-
tions is given in [2]. This technique is applied in Section 9 to show that every proper
equational class of monadic algebras has a decidable theory. The decision problem
for the class of all monadic algebras remains open.

We conclude in Section 10 with a remark concerning reduced products and sec-
tional representations. Section 1-7 are preliminaries to the main result. Several general
characterizations of subsheaves of constant sheaves are given in Section 2.

§1. Sheaves

The notion of sheaf is basic to this paper. The main concepts are defined below.
A reader who is unfamiliar with the elementary properties of sheaves and sectional
structures can consult Part 1 of R. S. Pierce’s monograph [5] where the general facts
are laid out for rings.
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A sheaf of algebras with type p is a triple (X, S, n) where (i) X and S are topo-
logical spaces; (ii) 7 is a local homeomorphism from S onto X; (iii) for each xeX,
7~ 1(x)=S, is the universe of an algebra with type u; (iv) the natural partial opera-
tions induced on S by the operations on each S, are continuous. The algebras 'S, are
called the stalks of the sheaf. If the meaning of X or = is clear from the context, it wil
be dropped from the notation.

A section of a sheaf (X, S, n) is a continuous map ¢: X — S such that o is the
identity on X. The subset of | [ . x S that consists of all sections is denoted by I'(X, S).
Condition (iv) above implies that I'(X, S) is closed under all of the operations of the
product [],cx S,; so it inherits the structure of an algebra with type u. For an al-
gebra A, regarded as a discrete topological space, (X, S, ) is a constant A-sheaf if
S =X x A with the product topology and = is the projection. The constant A-sheaf
over X is denoted by S(X, A).

A map h:(X, S, n)—> (X, S’, n') of sheaves, usually written 4:S— S’, is a con-
tinuous function 4 from S into S’ such that n==n'ok and h,: S, — Sy is a homomorph-
ism for each xeX where £, is the restriction of 4 to S,. A sheaf map 4:5— S’ is an
isomorphism, written 4: S8, if it is a homeomorphism of S onto S’. This implies
that each 4, is an isomorphism. ‘

If (X, S, n) and (X, S’, n') are sheaves and S’ is a subset of S, we say that S’ is a
subsheaf of § if the inclusion function is a sheaf map. It is well known that a subset
S’ of a sheaf S has at most one structure making it a subsheaf of S. Such. a structure
exist if (i) 7(S")=X, (ii) S’ is open in S, and (iii) for every xeX, Sy=n"(x)nS" is
a subsheaf of S,.

We assume that X is a Boolean space throughout the paper.

§2. Subsheaves of constant sheaves

A standard way to construct subsheaves of S(X, A) is well known. A collection
{U;:iel} of open subsets of X and a family {4;: iel} of subalgebras of 4 are specified
with the properties that {U,: iel} covers X and is closed under finite intersection and
that U; S U; implies 4,24, for all i and j in . The set {J;.; U;x 4;, denoted
S(U,; A;);c 1, inherits the structure of a subsheaf of S(X, 4). S(U;, 4,);.; is called a
nice subsheaf.

The objective of this section is to show that every subsheaf of S(X, 4) is nice
whenever A4 is a finite algebra. Along the way other descriptions of subsheaves are
obtained. The ideas here are closely related to those in Section 12 of [5]. We assume
that A is finite.

First introduce a lower semi-continuous function X S(A4), the set of all subal-
gebras of A partially ordered by =. A function 6: X — S(A) is lower semi-continuous
if {xeX: é(x)=B} is open for every BeS(A).
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Let 7, denote the projection of X x 4 onto A.
For a subsheaf T" of S(X, A) define 6;:X—S(4) by 6;(x)=n,(T,) for each
xeX.

LEMMA 2.1. (a) 6y is a lower semi-continuous function.

(b) For subsheaves S, T of S(X, A), S=T iff 67=10s.

Proof. (a). Suppose d;(x)=B. Then there exist a section g,eI'(X, T') for each
beB such that o, (x)=(x, b). Since T is an open subset of X x 4 and the topology on
Tis induced from X x A, there is a clopen neighborhood N of x such that o, (y)=(y, b)
for all yeN. Since A is finite there is a clopen N such that ¢,(»)=(y, b) for all
beB and yeN. Thus, N is a neighborhood of x contained in {z:8.(z)=2B}. (b).
Obvious.

LEMMA 2.2. Given a lower semi-continuous function 6:X— S(A) define Up=

{xeX:8(x)=2 B} for each Be S(A). Then
(i) Ug is open for each BeS(A),

(ii) {Ug: BeS(4)} covers X,

(iii) for all B, CeS(A), Uy Ue= Uy, where D is the subalgebra of A generated by
B and C.

The proof is obvious.

Observe, as a consequence of (iii), that B=C implies Uz2U. Also, in
case A has a smallest subalgebra M, condition (ii) can be replaced by the condition
Uy=X.

LEMMA 2.3. Given {Uy: BeS(A)} with properties 2.2(1)-2.2(iii).

(1) There exist a subset I of S(A) such that {Ug: Bel} covers X, is closed under
intersection, and, for all B, Cel, Uy < U, implies C < B.

(2) The nice subsheaf S =S(Up, B)p.;=\J{Upx B: BeS(4)}.

Proof. (1). For B, CeS(A) define B~ C iff Uy=Up,. Clearly ~ is an equivalence
relation on S(4). Moreover, if B~C and D is the subalgebra generated by B and C,
then, by 2.2(iii), Up= Uz Ug= Uy, i.e., D~ B. Since 4 is finite each equivalence class
of ~ contains a largest member under <. Let / be the subset of S(A4) that consists of
the <-largest member of each ~ equivalence class. The following properties are now
clear:

(a) if BeS(A), there exist Cel such that Uy= U,

(b) if BeS(A) and Cel such that U= Uy, then B<C.

From (a) and 2.2(ii) it follows that {Ug: Bel} covers X and from (a) and 2.2(ii)
it follows that {Uy: Bel} is closed under intersection. Now, suppose B, Cel and
U S Ug. By 2.2(iii), Ug= Uy Uc= U, where D is the subalgebra generated by B and
C. By (b), B2 D2C as desired. Hence (1) holds.
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(2) By (1), S =S(Up, B)g., is a nice subsheaf of S(X, 4) and is clearly contained
in |J {Ugx B: BeS(A4)}. On the other hand, for BeS(A4), by (a) there is a unique
Cel such that Uy= U, and, by (b), B C. Hence

Ugx B=Ucx B&Ucx C<S.

Thus, S(Ug, B)g.;=\J{Ucx C: CeS(A)} as desired.

Remark. For the nice subsheaf S in 2.3(2), 55 can also be described in terms of
the family {Uy: BeS(4)}. Namely, for xeX, 5(x) is the subalgebra of A generated
by all B’s with xe Uj.

THEOREM 2.4. Every subsheaf of S(X, A) is nice. In addition, subsheaves corre-
spond in a unique way with lower semi-continuous functions 5:X — S(A) and also with
Jamilies {Uy: BeS(A)} of subsets of X that satisfy 2.2(1)-2.2(iii).

Proof. Let T be a subsheaf of S(X, A). By 2.1 6 =4, may be used in 2.2 to produce
a family of sets {Uy: BeS(A)} with properties 2.2(i)-2.2(iii). This family yields, by
2.3, a nice subsheaf §'=|_J{Uyx B: BeS(4)} < T. Conversely, if (x, s)eT, sen,(T})
and xe{y: 7, (7T,)271,(T,)} = Uy, (1., Thus, (x, $)e U,, 1., X 72 (T) = S. Hence T=S$
is nice as desired.

Suppose that a lower semi-continuous function & is given and that S is the nice
subsheaf produced using 2.2 and 2.3. Since xeUjy={y:8(»)2(x)}, {x}x5(x)
S Uszy X 0(x) S S5 50 8(x) =I5 (x). On the other hand, xe U, implies §(x)= g (x).
Hence 6=14s.

Now, suppose we start with a family of sets {Vy: BeS(A4)} satisfying 2.2(i)-(iii)
and construct in turn S, dy and finally a family of sets {Uy: BeS(A)} using §g in 2.2.
It is easy to check that xe Uy iff d5(x)2 B iff xe V' using the remark priorto 2.4. Thus
Up="Vj as desired.

By the previous results a subsheaf S of S(X, 4) has the form S=S(Up, B)s.,
where I < S(A). (Cf., 2.3.) Call the set of pairs (Up, B) where Bel the standard com-
ponents of S. This description has the advantage that some superfluous information
has been removed.

It is well-known that I'(X, S(X, 4)) is isomorphic to the algebra of all continuous
functions from X into 4. The next result relates I'(X, S), where S is a subsheaf of a
constant sheaf, with algebras of special continuous functions from X into 4.

Suppose that a subsheaf S of S(X, 4) has the form S =S(Uy, B)y.; given by 2.3.
For each BeS(4) let Xz=("\{X —U: C —B+0}. Each X is a closed subset of X.

THEOREM 2.5. The map that sends ¢ to m,0 is an isomorphism of I'(X, S) onto
the algebra K of all continuous functions from X into A that take values in B on the closed
set Xy for every subalgebra B of A.
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Proof. Suppose ocel'(X, S) and xeX.. Then n,0(x)eC; for if not, dg(x)— C#0
s0 xeXo € X — Us () Which contradicts xe U, ,. Hence n,6€ K whenever o I'(X, S).
It remains to show, for feK and ¢ the unique section in I'(X, S(X, 4)) such that
nyo=f, that oeI'(X, S). So for xeX we need to show n,0(x)=f(x)eds(x). Since
SeK it is enough to show xeX;, ..

Since x€ Us gy, for any B, xe Uy iff xe Ugn Usy(,= Uc where C is the subalgebra
generated by B and dg(x). Hence it follows that xeX; ., since x¢ U, for every

BD5g(x).
§3. A-coordinates

A sheaf (X, S) admits A-coordinates if it is isomorphic to a subsheaf of S(X, 4).
If (X, S) is isomorphic to S(X, 4), we say that (X, S) admits full A-coordinates.
(X, S) admits local A-coordinates if every xeX has a neighborhood U such that
71 (U) admits A-coordinates. If the sheaf under consideration is clear from the con-
text we abuse the above terminology by saying that an open set U admits A-coor-
dinates in place of saying n™*(U) admits 4-coordinates.

The following lemmas provide methods for producing A-coordinates. The first is
a direct application of the partition property (cf. [5]).

LEMMA 3.1. If a sheaf over a Boolean space admits local A-coordinates, it admits
A-coordinates. If it admits local full A-coordinates, it admits full A-coordinates.

LEMMA 3.2. If a sheaf admits A-coordinates, it admits A*-coordinates for every
A* in which A can be embedded.

Lemma 3.1 can be weakened slightly for certain space. Call a Boolean space
partitionable if every open set is a union of a famliy of pairwise disjoint clopen sets.
A sheaf is partitionable if its base is.

LEMMA 3.3. If an open set U of a partitionable Boolean space admits local (full)
A-coordinates, then U admits (full) A-coordinates.

Proof. Use 3.1 on each clopen set and then piece the isomorphisms together.

The following lemma is used to extend coordinates.

LEMMA 3.4. Suppose S is a sheaf over X, U is open in X, S is a subsheaf of
S(U, A%), and h:S=n"*(U). Furthermore, suppose there exist o,eI' (X, S) for every
ac A and a monomorphism f: A — A* such that

(a) for all yeU, f(A) is a subalgebra of 7,(S,),

(b) the map sending a to 6,(y) is a monomorphism of A into S, for all ye X and an

isomorphism for all ye X —U,
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(c) for each ye U and ac A, h(y, f (a))=0,(p). Then
(i) S'=8SU(X x f(A)) is a subsheaf of S(X, A*), and
(ii) the map h’ defined for (x, a)eS' by

, _Jh(x,a) if xeU
W (x, a) = {af_1((,)(x) if xeX—-U

is an isomorphism S’ S.

Proof. (i) S’ projects onto X, each stalk S, is a subalgebra of {y} x 4*, and S’ is
an open subset of X'x 4*,
(i) To see that 4':.S'=S is an isomorphism, observe it is one-one, and

(d) h’(y,f(b)):a,,(y) for yeX, bed.

h'(y,f(b))=0,(y) for yeX — U by the definition of 4’. For ye U, the definition of A’
and (c) give h'(y, f(b))=h(p, f(b))=0,(») as desired.

Since (d) implies that A’ is onto and that &' (N x { f(b)})=0,(N) for every clopen
subset N of X and be 4, /' is a homeomorphism onto S. The fact it is an isomorphism
now follows from (b).

§4. Monadic algebras

This section contains general information about monadic algebras.

A monadic algebra is a structure {4, +, -, —, 0, 1, ¢) where (4, +, -, —, 0, >
is a Boolean algebra (BA) and c is a quantifier on this B4, i.e., c0=0, x<cx, and
c(x ey)=cx-cy. x is closed if ex=x. Denote the class of all monadic algebras by CA4,.

A simple CA4, is a non-trivial B4 with a quantifier ¢ such that ex=1 if xs0. For
each m=1, 2,... let 4, be the simple C4; whose Boolean part is the BA of all subsets
of {1,...,m}. Let A, denote a one element CA,. For each m<w let V,, denote the
variety generated by A4,. In [4] Monk showed that the varieties of CA,’s form an
w+1 chain Vo<V <V,<:-<C4;=V,. We say that 4 has degree <m if A€V,
A has degree m if it has degree <m but does not have degree <k for any k <m. For
finite n this agrees with the definition given in the introduction.

As a special case of the duality theory [1] every nontrivial C4, is isomorphic to
I'(X, S) where (X, S) is a sheaf of simple CA4,’s over a Boolean space. In this re-
presentation, for m<w, I'(X, S) has degree <m if and only if S, is embeddable in
A, for every xeX. For a sheaf (X, S) of simple CA,’s define §%: X > wu {0} by
setting 65(x)=m if S, 4,, and §%(x)= oo if S, is infinite. Call 5% the degree function
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of . We say that (X, S) or S is an m-sheaf if §%(x)<m for all xe X. Thus, S is an m-~
sheaf if and only if it is the dual sheaf of a CA4; with degree <m.
For each m<w let U, = {xeX:5%(x)=m}.

LEMMA 4.1. U, is open for each m <.

Proof. For each xeU,, there exist 2™ sections o,el'(X,S) (i<2™) such that
0,(x)#0;(x) for all i j. Thus, [[,<;<am c(o;@®0,) (x)=1, where @ denotes sym-
metric difference. Hence, | [;<; ¢(6,@®0;) (¥)=1, for all y in some clopen neighbor-
hood N of x. Since S, contains at least 2" distinct elements for each yeN, N € U,

The following two lemmas will be used to introduce coordinates.

LEMMA 4.2. For every xeU,, there exist a clopen neighborhood N< U,, of x and
0. (N, S) for ac4,, such that the map A, — S, that assigns a to o,(y) is a mono-
morphism for all yeN.

Proof. 4, is isomorphic to a subalgebra of S, since xelU,,. Say there exist
o, (X, S) for ae 4, such that the isomorphism sends a to o,(x). The isomorphism
property can be expressed by a finite number of conditions:

[1 c(oi®a) (x)=1,

a#b
coy(x)=1, for each a0
(o,+04) (x)=0,4,(x) forall a,beAd
—0o,(x)=0",(x) foreach ae4
o1 (x)=1,
o8 () =0,

Thus there exists a clopen neighborhood N of x such that the above set of conditions
holds for all ye N. Hence, for each ye N, the map that sends a to o/,(») gives a mono-
morphism of 4,,—S,. Choose ¢,=a), | N.

LEMMA 4.3. For xeU,, choose N and c/s as in 4.2. Define h: N x 4,, »n~1(S)
by h(y, @)=0,(y). Then h is a sheaf isomorphism of N x A,, onto its image h(N x A,,).
If the map sending a to ¢,(y) is onto for each yeN, then h: N x 4,,=n"1(S).

Proof. If N' is a clopen subset of N, (N’ x {a})=0,(N'). Thus, h establishes a
one-one correspondence between neighborhood bases of N x 4,, and A(N x 4,,).

The representation result 8.1 will apply to countable monadic algebras. If4 is a
countable C4,, its closed elements form a countable B4 and hence the dual sheaf
(X, ) of simple CA,’s such that A= I'(X, S) has the property that X is separable. In
particular, every open set in X is a union of a countable family of pairwise disjoint
clopen sets; i.e., the dual sheaf of a countable CA, is partitionable.




320 Stephen D. Comer ALGEBRA UNIV.

§5. The type of a point

To facilitate the induction proof in section 8 we introduce the following notion.
Suppose X=U,2U,2:-2U,#0 is a decreasing sequence of open sets. A point
x&X has type m (relative to this fixed sequence) where I <m<nif xe U, n(U,— U, ).

The main facts are

PROPOSITION 5.1. (a) If x has type m, then x€ U,y yq~ U, sq.

(b) Every xeU,— U, has a unique type.

Proof. (a) U,,,2U, and xeU, so xeU,,,. But x¢ U, .,

(b) xeU; n(U,—U,). Let m=max{i:xeU,}. Then xeU,—U,,,. Hence x has
type m. It is clear that a point cannot have two distinct types.

§6. Partial coordinates

The main results of the paper deal with coordinations using finite simple monadic
algebras. It was shown in section 2 that a subsheaf S’ of a constant 4-sheaf, A4 finite,
is nice. This allows us to examine A-coordinates in terms of the standard components
of S".

Suppose (X, ) is a sheaf, U is an open subset of X, and 4-coordinates of n~*(U)
are given by the isomorphism h:S'=~zn"'(U) where S’ is a subsheaf of S(U, A).
Suppose the standard components of S’ are the pairs (U, B) for Bel where I <.S(A).
For each Bel and beB there is chel'(Uy, S') given by c5(y)=(», b). Denote
th=hcy eI (Up, n~*(Uy)). A homomorphism 7%: B— I'(Uy, n~1(Uy)) is defined by
t8(b)=1}. We call < a partial A-coordinate.

The family {t”: Bel} of partial coordinates has the following properties.

THEOREM 6.1. (1) For each ye Uy the composition of v® with the homomorphism
that evaluates sections at y embeds B into the stalk of n™'(U) at .
(2) For every component where (x, a)e Uy x B with Bel,

h(x,a)=15(x).

Proof. (1) The map that sends b to 75(y) is a composite of the monomorphism
B— S that sends b to (y, b) and the monomorphism 4,:S, -z~ (U),.
(2) For Bel with ae B and xe Uy, t5(x)=hc(x)=/h(x, a) as desired.

§7. Combinatorial properties

Recall that 4,, is the specific simple CA; whose underlying BA is P(m), the set of
all subsets of {I,...,m}. The lemma below establishes a recursive amalgamation
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property for the class of finite simple CA,’s. Iterating the function given in 7.1 pro-
duces a function #* that will be useful later.

LEMMA 7.1. Suppose 1 <k<n. There is an r with the property: for every family
{fi}ic1 of monomorphisms f;: A, — A,, there exist a family {g;};.; of monomorphisms
giiAd,—~ A, such that g, fi=g,f; for all i,jel. In fact r(k,n)=Y 5., max{u(i):
peoB 0} and Y5, u(j)=n} is the least r with the above property and
rlk, n)=k(n—k+1).

Proof. Since n=pu(1)+--+u(k) and wu(i)>1 for each i, max{u(i): pe
ook ay, L, n}and Y, u(j)=n}=n—k+1. Hence, r(k, n)=k(n—k+1).

Choose r =r(k, n) and suppose { f;};.; is a family of monomorphisms 4, — A4,
For each iel define u;:{1,....,k}—{1,...,n} by w,(j)=[f({jD| for j=1,..., k.
Since n=} ; u;(j) for each i, r = r*=3  max{u;(j): iel}.

Embeddings g;: 4, — 4,. are introduced in the following way. Partition {1,..., r*}
into k disjoint sets ay,..., @, where |a;|=max {y,(j): iel} for each j. For each iel,
g; is specified by giving its values of the atoms of P(n). For each j=1,..., k either
wi(j)=la;| or u;(j)<la;|. In the first case let g; map the atoms contained in f£;({ j})
onto the atoms contained in g; in any one-one way. In the second case, partition the
atoms contained in a; into u;(j) disjoint sets by, ..., b,,(;, and assign the atoms con-
tained in f;({}) to the b ’s in a one-one way.

Observe that g} is defined in such a way that g} f; is the unique embedding A, — A4 .
that sends {j} to a; for each atom { j} in 4,. Hence, g f;= g} f; for all i, jel.

Finally, since r*<r we can choose a fixed embedding /1: 4,.— 4, and set g;=hg;
for each iel. {g,};.; is the desired family of embeddings.

Itis easy to construct an example that shows r(k, n) is the least value of r that works.

Let N=w~1 and let r(k, n) be any primitive recursive function @ x @ — N that
agrees with the functionrin 7.1 for 1 <k <n. Forexample r(k, n)=max {1, k(n—k+1)}
will do. Define «: N x N x N— N by

a(m, n, 1)=max {m, r(n—1, n)}
a(m, n, k+1)=r(n—(k+1), a(m, n, k))

Define n*:w — o by the conditions: 0*=0, 1*=1, and (n+ [)*=u(n*, n+1, n).

It is clear that both « and n* are primitive recursive. The first few values of n* are
1*=1, 2*=2, 3*=4, and 4*=10. For 1<k <n also let n,=a((n—1)*, n, k).

The following properties about n*, n,, and r are used later.

LEMMA 7.2. (i) r(k, n)=n for 1<k<n.
(il) a(m, n, k+1)=o(m, n, k) for 1<k<n—2.
(ili) a(m, n, k)=n for 1<k<n—1.
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(iv) a(m, n, k)zm for 1<k<n—1.
(v) nt=n,_;.
(Vi) n*=(n—1)*.

(vil) n*=n.

(Viii) 715, 211y for 1<k<n—2.

(ix) r{n—k, ny_)=n, for 1<k<n-—1.

Proof. (i) r(x, n)=x(n—x+1) on [1, n] takes its minimum value » at x=1 and
x=n. (i) For 1<k<n-2, 1<n=(k+1)<n<r(n—1, n)<a(m, n, 1); hence (ii) fol-
lows by induction on & using (i). (iii) o(m, n, k)=o(m, n, 1)>=n using (ii). (iv) is
similar. (v) is obvious, (vi) and (vii) follow from (iii), (iv), (v), and (viii) follows from
(ii). (ix) is immediate from the definition of #,_;.

§8. Coordination theorem

The main representation result can now be given. n* denotes the primitive recur-
sive function introduced in section 7.

THEOREM 8.1. Every partitionable n-sheaf admits A ,.«~coordinates.

Proof. We proceed by induction on n. The case n=0 is trivial. For a 1-sheaf
(X, §8), U=X and U,=0. Lemma 4.3 implies that every point has a neighborhood
that admits 4,-coordinates. By 3.1 S admits a full 4;-coordination. Basically this is
just the Stone representation Theorem.

Assume n>2 and let (X, S) be an n-sheaf. By 3.1 and 3.2 it suffices to show that
each xe X has a neighborhood that admits A4,,-coordinates for some m<n*. If xeU,,
Lemmas 4.2 and 4.3 give an isomorphism S(N, 4,)=h(N x A4,) for some neigh-
borhood N of x with N < U,,. Since no stalk of S has dimension >n, A(N x A,)=n""(N)
so N admits 4,-coordinates. If xe X — U,, there exist a clopen neighborhood N of x
such that #~!(WV) is a partitionable (n— 1)-sheaf. By the induction hypothesis, =~ (N)
admits 4, ~-coordinates. Now consider xe U,-U,. By 5.1(b) each point in U,— U,
has a unique type m between 1 and n— 1. By induction on k=1, ..., n—1 we verify that

(%) {ev‘ery point xeU,— U, with type m=n—k has a

clopen neighborhood that admits 4, -coordinates.

By 7.2, n, is a nondecreasing function of k, n*=n,_;, n*=(n—1)*, and n* zn. In
view of the discussion above and Lemma 3.2, every point has a neighborhood that
admits A4,.coordinates as desired.

It remains to establish (x) by induction on k.

In the case k=1 consider x with type m=n—1. By Lemma 4.2 there exist a clopen
neighborhood N'c U, _;, xeN’,and g, I'(N"’, S) for all ae 4, _, such that, for each
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yeN’, the map that sends a to o,(y) embeds 4,_; into S,. Let U,=N'nU,. U, is
open in X. Since 7' (U,) is an n-sheaf, Lemmas 4.2 and 4.3 show that it admits
local full 4,-coordinates. By 3.3 z~1(U;) admits full 4,-coordinates, i.e., there are
1,&'(U,, S) for ae 4, such that the map that sends (y, @) to ,(») is an isomorphism
S(U,, 4,)=r"1(U,).

For each yeU,, acA4,_; o,(y)=71,(y) for some beA4,. Thus, there exist a mono-
morphism f,: 4,_; — A4, such that, for ae4,_,,

7.(») =Try (a) ().

Since {z:0(z)=1(z)} is clopen for any two sections o, 7 and A4,_, is finite, there is a
clopen neighborhood N” of y such that

74(2) =71, (@ (2)
for all ue A4, _, and ze N”.
Now, for the embedding f:4,_, - 4, let

Ky={zeU,:0,(2)=1;(,(z) forall aed,_;}.

By the above discussion there exist a collection { f;};.; of embeddings f;: 4, ., — A4,
such that

(i) each K, is a nonempty open subset of Uy, and

(i) {K,,: iel} partitions U,.
By the combinatorial Lemma 7.1, the definition of n,, and 3.2, there exist {g:}icr
where g;: 4, 4, such that g, f;=g, f; for all i, jel. We use these functions to con-
struct a subsheaf of S(N’, 4,,) isomorphic to z~!(N") as an application of Lemma
3.4 with U=U, and X=N". Since {K,,: iel} is an open partition of U,, S=;.;
K, x gi(4,) is a subsheaf of S(U,, 4,,). K;, x 4,=S(K,,, A,)=n"1(K,,) by the map
that sends (, @) to 7,(y); thus, the map that sends (y, a) to 7, - 1(ay(¥) is an isomorph-
ism K x g;(4,)=n""(K,,). The map obtained by joining the pieces for each iel
yields an isomorphism /:Sx77!(U;) where h(y, @)=1,,-1.,(») if yeK,,. Choose
0*el. By the choice of {g;};c1, go«fo+= g; f; is a monomorphism 4, _; - 4, such that
go+for(A,-) is a subalgebra of g,(4,) for each iel. To apply 3.4 it remains to observe
that, for ye U, and bed, _,,

h(1, gox for (b)) =0 (»).

In fact, if yeK,, then h(p,go«for(0)=h(p, g fi(b)="1;,4)(¥)=0,(») by the
choice of {g;};.; and the definition of K,. It follows from Lemma 3.4 that
S'=SU(N'"x gos fos(4,-1)) is isomorphic to = *(N’). Thus, a point xeU,— U,
with type n—1 has a neighborhood N where ™! (N) admits A, -coordinates. This
proves (x) for k=1,
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Now suppose 1<k<n—1 and (x) is true for all k' <k. Suppose xeU,— U, has
type m=n—k. Thus, xeU,,n(U,-U,,;,) and xeU,, .~ U, by 5.1.

Use Lemma 4.2 and the fact U,, is open to choose a clopen neighborhood N’ of
x, N'€U,, and sections o,eI'(N', S) for ae 4, such that the map 4,,— S, sending a
to o,(») is an embedding for all yeN'.

Set Up1=U,r1 " N'. U, . is an open subset of X and =~ *(U,,, ) is an n-sheaf.
For every ye U, either (a) yeU, or (b)yeU,+,— U, or (c)yeU,~ U, and has type
m’ for some m’>m (and of course m’ <n).

If (a) holds, since n~*(U,,+) is an n-sheaf Lemma 4.3 implies there is a clopen
neighborhood N of y, N U,,, ; n U, such that n~*(N) admits 4,-coordinates.

If (b) holds, there exist a clopen neighborhood N of y disjoint from U, and hence
7”1 (N)is an (n—1) sheaf. By the induction hypothesis of the theorem, ™" (N) admits
A ,—1y=coordinates.

Suppose (c) holds and let k'=n—m’ where y has type m’. Since m’'>m, k' <k.
By the induction hypothesis (for k), () holds for k" and thus y has a clopen neighbor-
hood N such that n 7! (N) admits 4, -coordinates.

By 7.2, n, is a nondecreasing functlon of i, n; =zn, and n, >(n~ 1)*. Since k' <k—1,
Lemma 3.2 implies that #~*(U,,+ ;) admits a local 4, _,-coordination. X is partition-
able so, by Lemma 3.3, n~'(U,,,,) admits A4, -coordinates. Thus n~'(Uy,.,) is
isomorphic to a subsheaf S’ of S(Up.y, 4, ).

Suppose the standard components of S’ are the pairs (U, B) for Bel where

=S8(4,,_,)- By the development in Section 6, the isomorphism S'=zn"'(Up,,)
yields a family {t®: Bel} of partial 4,, _-coordinates.

For Bel and a monomorphism f: 4,, — B let

K%={zeUy: for every ae4,, 0,(2)=15,(2)}.
Since A4,, is finite, Kl}" is open.

OBSERVATION 1. Every element in U,,,; belongs to K? for some Bel and
some embedding f:4,,— B.

For ye Uy, Sy={y}x B for some Bel. Then ye Uy and, by 6.1. (1), the map
that sends b to r',i( y) is an isomorphism of B onto S,. By choice of the ¢,’s the
map that sends a to ¢,(y) is an embedding 4, — S,. Thus, there exist an embedding
Sy A,— B such that oa(y)=rfy(a)(y) for all aeA,,.

OBSERVATION 2. K2~ K§ =0 whenever f:4,,— B, f':4,,— C and f#f".

Suppose f(a)# f'(a) for some aeA,, and ye K2 K%. Then a(y, f(a))=1% & (»)
=0,(1)=1% @ (3)=h(p, f'(a)) by 6.1. (2). A contradiction to f(a)#f'(a) is obtained
from the fact /4 is one-one.
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Set X={f:4,,— 4, _,:[is one-one, f (4,,)< B for some Bel}. For feX set
K,=\J{K?: BeX, f(4,)<=B}.

By observation 1 and 2 {K,: feX} is an open partition of U,,,,. Say, { feX: K, #0}
= { f;}ics- By the combinatorial Lemma 7.1, there exist a family {g;},., of embeddings
g1 4,, A, (see 7.2(ix)) such that g, ;= g, f; for all i, jeJ.

Now, for each ieJ, the 4, _ -coordination S'=n"*(U,,,,) of n~1(U,,, ) induces
an A4, _,-coordination of ‘1(Kfi) in the following way. Let Uy= K, n Uy for each
Bel. Then K;,=\Jpes Up. Let S'=Jp.; Usx B. Since S is the restriction of S to
K, the isomorphism 4:S'~n~'(U, ) restricts to give S'n"*(K,,) for each ieJ.

Lemma 3.4 with U =U,,,; and X=N" will be applied to construct a 4, -coordina-
tion for =~ (N"). First § and % are produced for the lemma.

For each ieJ, Ug.; Upx g;(B) is a subsheaf of S(U,, 4, 4,,) isomorphic to
S’=\Jper Upx B. Restricting both to the part over K, we get a subsheaf §'=1{Jp.,
Ujx g:(B) of S(K,,, 4,,) and an isomorphism

For (y, b)eS', say ye Uy and beg,(B), h;(y, b)=14 - 14 (»). Since the above holds for
each ieJ, §=_J;.; S'is a subsheaf of S(Uj, 41, 4, ) and =, k; is an isomorphism
of S=a™ (U4 1)

Now we check the hypothesis of Lemma 3.4. Fix 0%eJ. Then go. fo+= g, f; for all
ieJ and go« fo« embeds 4,,—A4,, . Now, suppose yeK,,; then yeri for some Bel
where f;(4,,) < B. Since, K}, Uy, ye Uy. Thus, ;= {y} x B2 {y} x f;(4,,). Therefore,

$y2 {1} x g/(B)=2 (¥} x g:fi(An)={¥} X g0+ for(4)-

Hence, {y} x go« fo:(4,,)E S, for each yeU,, . 1.

Finally, we must check that h(y, go« fo«(b))=0,(y) for all yeU,,,, and beA,,
Suppose yeK,, for some ieJ. Then yeK?i for some Bel with f;(4,,)<B. By the
definition of K7, o, (y)=1},;(»). Properties of &, and the definition of / yield

T?i(b)(y)zﬁi(y: gtfl(b))
=h(y, 8o+ fo+(D))
as desired.
Now, by Lemma 3.4, n ™' (N’) admits 4, -coordinates. Hence, we have constructed
a clopen neighborhood N’ of the point x with type m=n—k such that x ~* (N ') admits
A, ~coordinates. That is (x) holds for k. Thus, (x) follows by induction and this com-
pletes the proof of 8.1.
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Since the dual sheaf of a countable CA4, is partitionable, the following is a special
case of 8.1.

COROLLARY 8.2. Every countable CA; with finite degree n is isomorphic to a
CA (X, S) where S is a subsheaf of a constant A .~sheaf over a Boolean space X.

Representations as algebras of continuous functions can be obtained from 8.2
and 2.5.

COROLLARY 8.3. For every countable CA{ M with finite degree there is a Boolean
space X, a finite simple CA(A, and a family {Xy: BeS(A)} of closed subsets of X such
that M is isomorphic to the algebra of all continuous functions from X into A for which
the values on Xy belong to B for every BeS(A).

§9. Decidability

Corresponding to the representation given in 8.2 there is a decidability result. A
relationship between sectional representations and decidability was given in [2]. In
particular, an immediate consequence of 2.5 in [2] is

THEOREM 9.1. If A is a finite simple CAy and A (A) is the class of all ' (X, S)
where S is a subsheaf of S(X, A) for some Boolean space X, then # (A) has a decidable
theory.

From 9.1 and 8.2

Theorem 9.2. For each n<w, Th(V,) is decidable.

Proof. V, is characterized by a single identity &, in addition to the CA4, axioms.
(Cf., Monk [4]). By 8.2 the nontrivial countable members of ¥, are (up to isomorph-
ism) the countable members of X '(4,.) that satisfy ¢,. By 9.1, #°(4,.) is decid-
able. Hence, the theory of the nontrivial members of V,, being a finite extension of
TH A (A4,.), is also decidable. It follows that Th ¥, is decidable.

§10. Sectional structures and reduced products

The variety ¥, is essentially the class of all Boolean algebras. It is known that every
member of ¥ is elementarily equivalent to a reduced power of 4,. An example is
given below of a subsheaf S of a constant 4,-sheaf with the property that I'(X, S) is
not elementarily equivalent to a reduced power or limit power of 4,. Moreover the
structure is not elementarily equivalent to any reduced product of simple CA4,’s.

Let ¢ (x) denote the formula

Azg, 21 (czo=xAczy=xAZy 2, =0A2zy+2,=X).
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Consider the Horn sentence 0:

A%, v, zg, 2 Vz[ex=xAcy=yAx - y=0Ax+y=1
Az x=z-cz=2)A20 2y =0AZo+2Zy=yACZg=YyACZ;=Y].

The sentence 6 says there is a closed element x such that every element contained
in x is closed and ¢ is satisfied by — x.

LEMMA 10.1. 0 holds in every simple CAA.

Proof. If A is a two element CA,, let x=1 and y=2z,=2; =0. If 4 has more than
two elements, choose x=0, y=1, z, any element in 4 different from 0, 1, and z; = —z,.

Suppose X is a Boolean space dual to the BA of all finite-cofinite subsets of w. To
be precise take X ={0, 1,...} U {0} where oo is the only non-isolated point. Let
Bo=I(X, S) where S=(X x 4T)u {0, 1,...} x 4, is the subsheaf of S(X, 4,) whose
stalk is 4, at a point # co and whose stalk at oo is the unique 2 element subalgebra
A% of A,. B, can be described in non sheaf-theoretic terms (up to isomorphism) as an
atomic CA, with a denumerable number of c-atoms such that (i) every c-atom con-
tains exactly 2 atoms and (ii) every element is a sum of a finite or cofinite set of atoms.

THEOREM 10.2. B, is not elementarily equivalent to a reduced product of simple
CAy’s.

Proof. By 10.1 and the fact reduced products preserve Horn sentences, it is enough
to show 6 fails in B,. Suppose 0 holds in B,. Then there exist a closed xe B, such that
{ze By: z<x} is discrete. It must be the case that x=0 so 1= ~x satisfies ¢ in By.
This is clearly impossible because S, has two elements. Hence 0 can not hold in B,.

As a consequence of 10.2 the theory of all €4’s is not the same as the theory of the
class of all reduced products of simple C4,’s.
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