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MULTI-VALUED LOOPS, GEOMETRIES, AND ALGEBRAIC LOGIC
Stephen D. Comer *

ABSTRACT. A notion of multi-valued loop is introduced.
The multi-valued loop associated with a finite projective
geometry with at least 3 points on a line is isomorphic to a
“quotient” of an ordinary loop modulo a special equivalence
relation. An application to algebraic logic is given.

A multi-valued loop is a system (A,+,e) where e © A and foreach a, b€ A, a*b is

a nonempty set of elements of A such that ‘

(i) for each a,b there exist x,y such that b€a-x and bE y-a,

(ii) forevery a,a*e= {a} =e-a, and

(ili) for every a there exist unique x,y such thate €a-x ande €y-a.
Multi-valued loops can be viewed as special multi-groupoids as introduced in Bruck
[1]. Other multi-valued concepts that have appeared in the literature, e.g., the notion
of multigroup due to Dresher and Ore [2] and the notion of cogroup due to Eaton
[3], seem to be unrelated to the notion considered here. However, examples of
multi-valued loops readily arise in the study of groups, geometry, and algebraic logic
to mention a few areas. This paper will deal with multi-valued loops associated with
projective geometries and with a relationship between multi-valued loops and
representations of atomic structures of certain 3-dimensional cylindric algebras. Qur
main result states that the multi-valued loop associated with a finite projective
geometry that has at least three points on a line can be obtained as a quotient of an
ordinary loop modulo a special equivalence relation. In the last section we apply this
resuit to partially answer a question concerning algebraic logic raised by Monk in [5].
The author wishes to acknowledge the valuable suggestions of the referee concerning
the presentation of the main construction.

1. A projective geometry is a system G = (P,L) where P is a non-empty set (called

the “points” of G), L is a non-empty collection of subsets of P (called the “lines’ of

&) and the following axioms hold:
*This paper was supported in part by a grant from the Citadel Development Foundation.
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(G1) each line contains at least three points;

(G9) each pair of distinct points p and q lie on a unique line pq:

(G3) if p, q, 1, and s are distinct points and pq and s have a common point,
then pr and gs have a common point.
Notice that the notion of projective geometry allows dimension 1,2, or higher; e.g., see
Seidenberg [6].

A multi-valued loop can be constructed from a projective geometry G in the
following way. Choose e & P and let A= {e} U P. Denote by L; the system (A,*,e)
where p ¥*e=¢ *p={p} forall p &€ A and for p,q €P

{ep} ifp=q
p*q=
pq-{p,at ifp#q
Clearly L is a multi-valued loop.

A multi-valued loop can also be constructed from an ordinary loop via quotient
construction. Suppose A = (A, -, e) is a loop and 0 is an equivalence relation on A.
The product XY of two blocks (i.e., equivalence classes) of § is XY = {x:y EA: X E
X, yEY]

A block B C.XY is called (X,Y)-projective if for every x € X, xy € B for some
y € Y and, similarly, for every y € Y there is an x € X with xy € B. We call 0 special if
{e} is one of the f-blocks, and every product XY of 6-blocks is a union of
(X,Y)-projective blocks. Special equivalence relations need not be congruence
relations.

PROPOSITION 1. For a loop A = (A,+,e) and a special equivalence relation 0 on
A, let AJ0 =(A)0,% E)where A/0 is the set of all 8-blocks of A, E =e/8 ={e}, and for
blocks X,Y,B

Be X *Yiff BCXY.
Then A/0 is a multi-valued loop. We refer to A/ as a quotient of A.

The proof is routine. To illustrate we verify (iii). For blocks X,Y, note that {e } C
XY iff e=xy forsome x € Xandy €Y. For x € X, by (iii) for 4, e = xy for some y €
A; thus, {e} C XY for Y=y/0.Ifalso {e} C XY, then since {e }is (X,Y')-projective,
e =xy' for some y' € Y'. By (iii) for 4, this implies that y = y'. Hence Y = Y'.
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Not every multi-valued loop is isomorphic to a quotient A/ of an ordinary loop.
PROPOSITION 2. There does not exist a loop A and a special equivalence
relation 0 on A such that A/0 is isomorphic to the 3 element multi-valued loop whose

multiplication table is given below.

1 2 3
1 1 23
2 2 {13} 3
3 3 2 (1,2}

PROOF. Every quotient A4/6 satisfies the following property (see Proposition 1

for notation):

(1) VBI[VX(BEB* X—>X=E)-»VXBeX*B~>X=E)].
Fix B€ A/ and suppose that, for all X,B C BX implies X = E; in addition, assume
that B C YB. We must show that Y = E. Choose b & B. Since B is (Y,B)-projective,
yb € B for some y € Y. Now yb = bx for some x. If X = x/6, then yb € B N BX; thus,
since 6 is\special, B C BX: By hypothesis, this implies X = E = {e}; hence, x = ¢ and so
yb=bx=be=Db. Since 4 isaloop, thisimpliesy =e. Hence Y =E and so (1) holds in 4/6.

The 3 element multi-valued loop above has the property asserted in the
proposition since it fails to satisfy (1). This can be seen by choosing B = 3; clearly
Vx(3&€3x—>x=1) but 3& 23 while 2% 1.

2. Our main result is the construction of a loop L= (L,:,q) and a special
equivalence relation 8 on L from a finite geometry G so that LGQ’ Lj6.

We first consider the case where G is a finite geometry with N = 4 points on each
line. Order the set P of points of G as py,py,.... For each p; choose a set Aj=
{3i,l"“’ai,N-2} with N-2 elements in such a way that A; N Aj = 0 whenever i+ j.
Choose ¢ distinct from all ai,k’s and set L= {q} U UiA;. Let ¢ be the equivalence
relation on L that has {q} and the Aj’s as its equivalence classes.

For i #j, suppose W= {phl ,...,th} where hp <h,y <..<hy. Let ﬁpj* result

from permuting (pj ...,th) cyclically to begin with p;, and then deleting p; and pj-

'1 3
. 1
Let Y(k) be the subscript of the kth term in i)i_pj*; that is,

PiP = Pgiicyy Py
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For a finite subset F of P and pj € F we say that p; has rank n in F if p; is the nth
element in F (under the linear ordering induced by the subscripts).

Still assuming i # j, for each Pm € “ﬁl‘f)] - {pi,pj}, let 'yij(m) be the rank of p; in
;Tl'pg {p;,p, } and let ,oi(j) be the rank of P; inf)i—p‘j. If P;-P; and p,, are three distinct

collinear points, notice that pi(j) = p™M(j). In addition we find that

() ifj <im
® Ym) = piG) - 1 fi<j<morm<j<]l
i) - 2 ifim <j.

In the following, the second subscript k on 4 should be regarded as an integer
modulo N-1. Thus, sums and differences involving these subscripts should be
calculated mod N-1.

Now we introduce a binary operation * on L. First let qra=a=a-q foreverya €
L. Next we define

4 K+ ifk+2#0(modN-1)

4k "8 =
q ifk+2=0(mod N- 1)
Finally, if i # j, we define Ajj"3j0 T Ay where
YK+ Q-1 if i <j
A) m=
Bk + ©) ifi>]
and

n=a(m)+k- I(mod N- 1).

For the case where the geometry G has exactly three points on each line the
(L,*,q) constructed above will also be a loop; however, the equivalence relation 6 is
the identity in this case and so this construction does not produce the desired
isomorphism LG;/ L/6 when N = 3. A construction that works for N = 3 is similar to
the above but simpler. As before order the set P of all points of G as p[,py,...; now

choose pairwise disjoint two element sets A= g

io+2j } for each p;. Choose q distinct

from all a;;.’s and define L and @ as before using the present q and A’s. The binary

operation on L is now defined so that q is the identity,
q itk # ¢
dik "dig T o
aik+ 1 ifrk==¢
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(second subscript calculated mod 2) and, if i# j, A2 T Ay where p,, is the
unique third point on f)ﬁ)“J and n= k + 2mod 2).
THEOREM 3. (i) L =(L,,q)isaloop,
(ii) 0 is a special equivalence relation on L;
(i) L~ L/0.

PROOF. We give the details of the arguments only in the case where L is
constructed from a G with N 2 4 points on a line; the arguments when N = 3 are
similar but simpler.

(i) We must show that, given z and one of x and vy, the condition that xy =
z determines the other uniquely. The case that any of x,y, or z is q is immediate. Let
X = i, VT 850, 27 g If two of i,j,m are the same all three are the same, and the
conclusion is again immediate. We suppose henceforth that i,j, and m are all different.

CASE 1@ aj, and a,, given, Since, for fixed i and m, 7ij(m) increases
monotonically with j, there exists a unique Pj EPiPy - {pj,pm} such that 7ij(m) +k-
1 =n (mod N- 1). Similarly, with m,i, and j now given, there is a unique h such that
Bij(h) =m. If i <j we determine.¢ uniquely from the condition thath =k + 2 -1 (mod
N - 1), and, if i > j, from the condition h =k + &(mod N - 1).

CASE 2: a9 and a;,, given. We first assume that j <<m. Then (+) becomes

PG - 1 ifi<j
li(m) =
20! ifi >,
We seek i and k such that
M ym)=n-k+1,
(D) either Uk + 8- 1) =mand i <j, or BI(k + £) = mand i >].
In view of (+) and pi(j) = p'(5) we may rewrite (1) as
(I eitherk=n-pMG) +2andi<j,ork=n-pMG)+ 1 andi>].
Using (I') to eliminate k, we are left with the condition
ary gl - pM(i) + 2+ 1)=m,
which is independent of whether i <j ori>>j. Here (1I'), as an equation in the known
quantities j, £, m and n together with the unknown i, has a unique solution for i. With

this value for i, condition (I') yields a unique solution for k.
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The case j > m is entirely analogous.
(ii). It suffices to show that, for i # j, AiAj is a union of (Ai,Aj)-projective
blocks A, Multiplication defines a map u: AixAj => U mii,jAm' The formula (A)
shows that each m occurs for some choice of k and £. The formulan =~4Y(m) +k- 1
(mod N - 1) shows that, while keeping k + ¢ and therefore m fixed, by varying k we
can obtain every value of n. Thus the map u is onto. It remains to show that ecach A,
for m #1,j, is (Ai,Aj)—projective. We must show that for all ajy there exist a0 such that
2y S Am (and symmetrically); but this results again from the formula (A).
(iii) We define a function f: LG — 1./6 as follows. Fora & L(;,
{q} ifa=e
f(a) =

A ifa=p; €EP
It is straightforward to show that f is an isomorphism of L onto Lj6.

3. We now consider one of many applications of multi-valued loops to the study
of cylindric algebras. An extensive study of the algebraic theory of cylindric algebras is
given in Henkin, Monk, Tarski [4]; however, it would suffice for the reader to be
familiar with the survey article [5]. To produce a non-representable CA3 in [5],
Monk associated an algebra with a quasigroup having 3 distinquished elements. The
same construction (repeated below) gives a CA3 for each multi-valued loop. For a
multi-valued loop 4 = (A, ,e) consider the structure pA = (S(R),U,ﬂ,f\/,O,R,ci,dij)ij<3
where R = {(xo,xl,xz) eA3: X9 € XXy }, (i.e., R is the graph of - viewed as a subset
of A3), and for X C R and i,j < 3,

¢;X={y € Riy; = x; for some x € X},
and

R ifi=j

o {lee,e)}t if {ijk} ={0,1,2}.
The proof of the next result is routine, e.g., see Monk [5].
PROPOSITION 4. BA isa C‘Aj.for every multi-valued Zoop A.
We say that a CA3B is loop representable if there is an ordinary loop A4 such that
B is embeddable in B4, In [51, such a B is called an 4, q - CA3. There is no loss by
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considering loops in place of quasigroups because isotopic systems induce isomorphic
CAj3’s and, for every specified triple in the graph of a quasigroup, there is an isotopy
of the quasigroup to a loop that maps the triple to the identity triple (see Bruck [1]).
In [5] Monk also associated a CA3AG with every projective geometry G having
at least 4 points on a line. It is routine to verify that AG’\=J Bl¢ by examining the
atomic structures of the two algebras. The question of finding a connection between
the loop representable CA3z’s and the A¢’s was raised in [5]. As an application of
Theorem 3 the following shows that the finite A’s are loop representable.
THEOREM 5. For every loop A and special equivalence relation 6 on A, BA/O
isomorphic to a subalgebra ofBA.
PROOF. Suppose A = (A,-,e) is a loop, 8 a special equivalence relation on A, and
R= {(BO,BI,Bz) € (A/0)3: By € By*B} is the graph of the operation * of A/f. For
(Bg,B1,B7) € R, define
aR0 B1,B2 ={(x,y,2) € A3: x €Bg,y €EBy,z=x'yEBy }
Clearly, agg g1 B2 € BA and {aBO,Bl,BQ: (By,B|,B5) € R} is a partition of the graph
of * into nonempty sets. Define f: S(R) — BA for all X € R by
fX)=u {aBO,Bl,BT (By,B1.By) € X1
It is routine to verify that f is the desired embedding of‘l?4/6 into BA using the
following facts.
D (e} {e},le} = {(e,e,e)}. (Recall, e/8 ={e}.)
For {i,j,k} = {0,1,2},
(2) djj= VU {agg g1 B2t B = {el}.
(3) ¢agp,B1,B2 = Yiaco,c1,c2° G = Bil-
From Theorems 3 and 5 we have
COROLLARY 6. If G is a finite projective geometry with at least four points on
a line, then A g (or equivalently BLG)is loop representable.
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