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THE REPRESENTATION OF IMPLICATIVE BCK-ALGEBRAS

Stephen D. CoMER*

(Received September 27, 1979)

Abstract. It is shown that the only subdirectly irreducible implicative BCK-algebra is the
standard 2-element one. Consequeéntly, that fragment of the calculus of classes which involves only
the set difference operation is completely axiomatized by the axioms for implicative BCK-algebzas.

Y. Imai and K. Iséki introduced a class of algebrasin [2] to serve as models for
the implicative sentential calculus. Today these algebras are known as implicative BCK-
algebras. Apparently set-theoretic considerations also partly motivated the definition
of these algebras. In the survey article [4], Iseki and Tanaka mention that BCK-
algebras generalize properties of the set difference operation.

Problem. Axiomatize those properties of the calculus of classes that only involve
the set difference operation (and the empty set).

It is easily verified that every collection of sets closed under set difference is an
implicative BCK-algebra. The goal of this note is to show that, conversely, every
implicative BCK-algebra is, up to isomorphism, a set difference algebra. Thus, the
axioms for implicative BCK-algebras completely characterize properties of set differ-
ence.

The main result reduces to showing that the only subdirectly irreducible implicative
BCK-algebra is the 2-element one. The proof utilizes a characterization of maximal
ideals in implicative ~BCK-algebras that generalizes facts about Boolean algebras.

For unexplained facts about BCK-algebras the reader should see [4].

1. Preliminaries. For any set X suppose .5 isa collection of subsets of X such
that (i) P& ¥ and (ii) the set difference 4—B € .% whenever 4,BE . The
system (%, —, Q) is called a set difference algebra. From the viewpoint of universal
algebra (&, —, D) is a subalgebras of the system (P(X),—, D).

A system (4, *, 0) where A isa nonempty set, 0 €A, and * is a binary
operation on A is an implicative BCK-algebra, IBCK-algebra for short, if it satisfies

the following axioms:

(M ry)x(xrz)<z*y.
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an xx(x=y)sy.

am x<ax.

(Iv) o<x.

V) x<y and y<x imply x =y.

(V) x<y ifandonlyif x *xy=0.

(VII) x#(y#*x)=x.

Models of (1) — (VI) are called BCK-algebras. The following lemma presents
properties derived in [4] from the axioms above.

Lemma 1. Inan IBCK-algebra, the following hold :

(1) (x#y)rz=(xrz)*y.

(2) x *y <z implies x %z <y.

(3) x<y implies x #z<y*z and z*y <z *X.

(4)  yrx<y.

(5) x*0=x.

(6) xx(xxy)=yx(y=x).

(1) yrx=(yxrx)*x.

Properties (1) — (5) hold in any BCK-algebra. A BCK-algebra that satiafies
(6) is called commutative. A binary operation A can be defined in any BCK algebra
by

xAy=x=(x*y).
Since an IBCK-algebra is commutative, (4, A) is a semilattice where x Ay is the
greatest lower bound of x and y.

H. Yutani proved in [5] that the class of commutative BCK-algebras form a
variety. Consequently the class of all IBCK-algebra is also a variety.

A nonempty subset 7 of a BCK-algebra A4 is called an ideal if (i) O €1 and
(ii) y =x, x €I implies y €1 An ideal I of A ismaximal if I+ A and there is
no ideal J such that J <J < 4. 1Itis an easy consequence of the definition that
y<x €I implies y€1.

As in the case of Boolean algebras, ideals correspond in a one-one way with homo-

morphisms. See [4] for details.

2. Ideals in BCK-algebras. Given a subset X of a BCK-algebra A let I,(X)
denote the smallest ideal of A4 that contains X. In particular, {0} =1Ig((Q) is the
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smallest ideal in a BCK-algebra and is called the trivial ideal.
Our first result gives a generative description of ideals. See also Iséki and Tanaka

[3].

Proposition 2. For any nonempty subset X ina BCK-algebra A, y € Ig(X )
if and only if
(8) There exists a finite sequence Xy, -, X, €X such that

(o (ex)exg) s )rx,=0.

Corollary 3. In an IBCK-algebra A the principal ideal generated by x is
Ig({xh={y€d :y<x}

Proof. If y satisfies (8), then (---(y*x)#*-.-)*x=0. By (7) this con-
dition is equivalent to y # x = 0, thatis, y <x.

In the proof of Theorem 5 we need a generalization of the above corollary. The

next result describes principal extentions of ideals in JBCK-algebras.

Corollary 4. For any ideal I in an IBCK-algebra A, y € I(J U{x}) ifand

only if
%) yeElor ysx €l

Proof. Clearly (9) implies (8). Assume that y satisfies (8). Then (---(¥
#Xx;) % .- )% x,=0 where for each i, x; €I or x; =x. If x;¢I forall i, then
y €I,({x}); hence y satisfies (9) since y *xx =0 &I by Corollary 3. Now
suppose that x; €1 for some i. By repeated use of (1) we may rearrange Xy, - -« ,Xr

and assume without loss of generality that

(- (G axt) e ) xp) e xpag) 5. ) wx,=0€T
where x; €1 forall i=n+l,.-.,r and x;=x for i<n (possibly n=0 in which
case x; €1 for all ). Repeatedly using condition (ii) in the definition of ideal we
obtain either y €1 (when n=0) or (---(y*x)*---)xx€l By (7) the last
alternative is equivalent to y * x €I. Hence y satisfies (9).

Both corollaries 3 and 4 extend to BCK-algebras by omitting the redution from
(- (y*x)*x---)xx to y*x. Forexample,ina BCK-algebra 4 the principal
ideal generated by an element x is {y €4 : (---(y*x)*.--)xx=0 where x
is repeated a finite number of times }. There results are not needed so we will not state
them.

The following characterizations of maximal ideals in IBCK-algebras extend results

known about Boolean algebras, It would be of interest to obtain similar characteriza-
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tions for maximal ideals in commutative BCK-algebras.

Theorem 5. Foranideal I inan IBCK-algebra A, the following conditions are
equivalent : '

(10) I+#A, andforany x,y €A either x*y €I or y *x € 1.
(11) I+#A, andforany x,y €A, if x Ny €I, then x €I or yé[.

(12) I is a maximal ideal.

Proof. (10)=(11): Assume (10) and consider x,y €4 with x Ay €I By
(10) either x *y €1 or y * x €I If x *y €], then it follows from x * (x * y)
=x Ay &1l that x €1 The proof that y * x €I implies y €1 is similar.

(11)=(12): Suppose (11) and that J is an ideal where I<J. Thus, there
exists an x €J—I Suppose y €A is arbitrary. By (VII) and (III), x A(y *x)
=x*(x%(y*x))=x*x=0€EL Since x ¢l by assumption, (11) implies that
ysx€lICJ. Since x€J and J isanideal, y €J. Thus, J=4.

(12) = (10): Assume I is maximal and suppose x * y &I. Then, by maximal-
ity, Iu(IU{x *y})=A. Hence y €1,(IU{x % y}) and consequently, by Corolla-
ry 4, either y €1 or y x(x *y)€I By (VII) y €1 in both cases and thus y * x
€17 since y *x<y. Hence y *x €7 whenever x »y €],

3. Representation. A BCK-algebra A is subdirectly irreducible if |A|>1 and
A4 contains a smallest nontrivial ideal. The second condition is equivalent to the ideal
{0} being meet-irreducible, that is, for all ideals I,J, if {0} =INJ, then {0} =T
or {0} =J. A BCK-algebrais simpleif {0} is a maximal ideal.

Let 2 denote the 2-element implicative BCK-algebra ({0, 1}, *, 0) where
1'%#0=1and 0x0=0=*1=1=%1=0. 2 isisomorphic to the set difference algebra

of all subsets of a 1-element set.
Lemma 6. Every subdirectly irreducible IBCK-algebra is isomorphic to 2.

Proof.  Suppose A is a subdirectly irreducible IBCK-algebra. We use (11) in
Theorem 5 to show {0} ismaximal. Suppose x Ay =0. Then, using Corollary 3,
Le({x D NIy =I;({x Ay} = {0} soeither Jp({x}) ={0} or I;({y})
= {0} since {0} is meet-irreducible. Thus, x =0 or y =0 which shows that {0}
satisfies (11). By (10) in Theorem 5, forevery x,y €4 either x <y ory <x.
Thatis, A is linearly ordered by <. If |A4]|>2, say 0<a<b, then Jz({a}) isa
proper, nontrivial ideal of A4 contradicting the maximality of {0 }. Thus, [4]=2
and, therefore, is isomorphic to 2.

Theorem 7. Every implicative BCK-algebra is isomorphic to a set difference
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algebra

Proof. The class of IBCK-algebras form a variety. By a theorem of Birkhoff
(cf., Gritzer [1], section 20), every IBCK-algebra A is isomorphic to a subdirect
product of subdirectly irreducible IBCK-algebra. By Lemma 6 this means that 4 is
embeddable in a power 2% for some set X. Since 2% = (P(X), —, ) the result
follows. Referen
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