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A REMARK ON CHROMATIC POLYGROUPS**

STEPHEN D. COMER#*

Polygrpups are multivalued systems that satisfy group-like axioms.
Natural examples, called chromatic polygroups, are obtained from
certain edge colored complete graphs by making a multivalued algebra
out of the set of colors. In [2] a close connection was given between
polygroups and complete atomic integral relation algebras. Chromatic
polygroups correspond to representable such algebras. Polygroups were
also used to show that if permutation groups with certain properties
exist, their orbital graphs must have a certain structure.

The main result of this paper is to establish a sufficient
condition for a polygroup to be chromatic. All polygroups with at most
3 elements are chromatic. There are exactly 102 (isomorphism) types of
4 element systems ([1]) of which at least 28 are known not to be
chromatic. The condition in THEOREM 1 applies to at least 30 of the 4
element systems. Fortunately, a stronger criteria, presented in [2],
works for at least 15 of these. In the proof of THEOREM 2 we show in
detail how to verify the condition in THEOREM 1 for the system Nl'

We conclude the paper by showing that although N1 is a chromatic
polygroup, it is not isomorphic to a polygroup obtainable from double
cosets of a finite group. Such an example is closely related to
questions raised by Ralph McKenzie in [4] with regard to permutational

relation algebras.

1. PRELIMINARIES

We recall the following definitions from [2].

A polygroup is a system M = (M,-,e,”") where etM, "' is a unary
operation on M, - maps M into nonempty subsets of M, and the following
axioms hold for all x,y,z in M:

(Pl) (x-y)ez = % (y-2),
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(P2) X'e = X = e*Xx,
(P3) xEy-z implies y&x-z‘lvand zey™t .
Many important polygroups are derived from color schemes, a

notion that extends D.G.Higman's homogeneous coherent configuration

(see [3]). Suppose ( is a set(of colors) and € is an involution of (.
A color scheme is a system V = (V,C_ ) where
e a ate(
(i) {Ca: aeC} is a partition of V?-I = {(x,y)eV¥: x # vy },
.. v _
(ii) Ca = Ce(a) for all at(,
(1ii) for each color and each vertex the color is present on
some edge from the vertex,
(iv) for a,b,ceC if (x,y)ecc, the existence of an (a,b)-path

from x to y is independent of the choice of x and y, in

symbols, ch(calcb)¢¢ = Cc E-Calcb'

V is called a partial scheme it it satisfies (i) and (ii). Given a
color scheme V, choose a new symbol IZC. (Think of I as the identity

relation.) The algebra(color algebra, configquration algebra) of V is

the system HV ={cu{x},.,”',1 ) where a~!= €(a) for a&(, = 1,

x.I =x%=1I.x for all xeCU{I},and
for a,b,cel,
-1
. = e < : b= .
a:b = {ceC: ¢ e lc} U (T : b=a™'}
A polygroup isomorphic to the algebra of a color scheme is called

chromatic.

A natural example of a chromatic polygroup is the system G/H of
all double cosets of a group G modulo a subgroup H. Namely,
c/E= { {HgH: geG)},-,H,” ")

where (HgH). (Hg'H) = {Hghg'H : heH} and (HgH)"'=(Hg 'H). This
construction generalizes to that of a (double)guotient. An equivalence

relation € on a polygroup M is called a (full) conijugation on M if

(i) x0y implies x"'eoy’',
(i1) ze€x-y and z'6z implies there exist x'6x and y'Oy
such that =z'ex'.y'.
The natural quotient system, denoted M/0, is a polygroup. In [2] it is




shown that Q%Group)= {G#/6 : 8 is a full conjugation on some group G}

is a class of chromatic polygroups.

2. A SUFFICIENT CONDITION

A simple condition on a polygroup was given in [2] for the
existence of a random color scheme whose algebra is the given polygroup.
This condition is generalized in THEOREM 1. As with the previous
condition we use the fact a polygroup can be described by a collection
of "forbidden configurations".

Suppose Y is a color scheme with a set C of colors. An element of

(3 is called a colored triangle or just triangle. A triangle (i,3j,k)

is realizable in V on an edge (x,y)SVZ—I if (x,y)eckﬂ (Cilcj). A class

K of colored triangles is locally realizable in V if, for every edge

(x,y)sCk and every (i,j,k)ek, (x,y)eCiICj. A class K of colored
triangles is forbidden in V if no triangle in K is realizable on an
edge in V. Note that condition (iv) in the definition of color scheme
means that if a colored triangle is not forbidden it is locally
realizable. A polygroup M is completely determined by the class of

colored triangles

FC(M={(a,b,c)e M3 : cga.b}
called its forbidden class. [M~ is M-{e}.] M is chromatic iff there
exist a partial color scheme that forbids FC(M) and locally realizes
its complement.

We only consider classes of triangles that are closed under the
obvious symmetries; thus, for example, if (i,j,k)&X, then so does
(k,€(3),1) and (e(i),k,3). Occasionally this saves writing, for
example, the polygroup N1 given in TABLE 1 has a forbidden class of 11
elements, however, FC(Nl) is "generated" by {(1,1,2),(1,1,3),(1,3,1)}.

With the terminology above the main result can be given.

THEOREM 1. A finite polygroup M is chromatic if K=FC(M) has the
property:
for every partial scheme V=<V,Ca)aec that forbids K, every edge
(x,y)E:Ck and every triangle (i,j,k)#K, there exist a partial
) scheme V' extending V such that V' forbids K and (i,3,k) is

realized on (x,y) in V'.
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Proof. A color scheme is constructed by induction. To begin, choose

a trivial partial scheme Vg, that forbids K, eg., an edge or some
admissible triangle. By induction we construct a chain Vo& V1< ...

of finite partial schemes such that each Vn+l forbids K but realizes
all triangles not in K on edges in Vn. The union of this chain is then
a partial scheme that forbids K and locally realizes its complement.
Hence it is a color scheme whose algebra is the given M. Now, to

construct Vn+ from Vn enumerate all edges in Vn and construct a finite

chain of finiie extensions of Vn’ one for each edge. To construct an
extension corresponding to an edge (x,y) enumerate all triangles not in
K which need to be realized on (x,y). We apply (*) repeatedly (once
for each triangle) to build an extension of Vn that realizes each of
these triangles ( and also all triangles realized on "previous" edges).
a

As will be seen in the following section it is more difficult to
verify (*) than the stronger condition given in 5.3 of [2]. Also, we
have less control over the final color scheme in the construction
above. For example, we do not know when the resulting scheme is
homogeneous nor when its automorphism group is transitive on vertices.
THEOREM 3 below strongly suggests there are color schemes with no
polygroup eguivalent schemes having these properties.

The condition (*) in THEOREM 1 is probably not necessary for M to
be chromatic. A possible example is the polygroup A?: whose forbidden
class is {(1,1,2),(%,1,3),(2,2,2),(3,3,3)}. It is not known whether
this system is chromatic. However, it can be shown that if it is
chromatic, the C; monochrome subgraph of a representing scheme is

3-partite and so there are partial schemes that fail to satisfy (*).

3. TWO NONCOMMUTATIVE CHROMATIC POLYGROUPS
The multiplication tables for the systems Ny and Ns are given in

TABLE 1. Using THEOREM 1 we show
THEOREM- 2. Ny and Ns are chromatic polygroups.
This is the most difficult step needed for the following.

THEOREM 3. There are chromatic polygroups not isomorphic to a double

coset system G/H for any finite groups G and H.
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Proof. Ny and Ns are two such polygroups. They are chromatic by the
result above. The following argument, pointed out by P.J.Cameron,
shows that a double coset algebra G/H with 4 elements where G is a
finite group must be commutative. A finite group G induces a coherent
configuration on the coset space of H. The corresponding centralizer

algebra A is semisimple and decomposes into matrix rings Ai=M(C,ei)

(see [3]). If G/H has 4 elements, A has dimension 4 and B, has
dimension 1; so 4 = 1+Zez. It follows that each Ai has dimension 1
so A (and hence G/H ) is commutative. ]

We conclude the paper with the long and tedious proof of THEOREM 2.

Proof. (THEOREM 2) We only consider Ni, the details for N; are similar.
It suffices to show that FC(N,) satisfies (*). To aid the discussion
we classify points of a partial scheme relative to a given edge. For
x,veV, x#y, we say z&V, z#x,y has type (o,B) with respect to (x,y) if
(x,2)eC, and (z,y)aCB. Now, suppose (x,y)evz-I, (i,j3,k)gK, and (x,y)
is in Ck’ If there exist z&V with type (i,j), we can set V'= V and we
are done. Assume V contains no element of type (i,j) with repsect to

(x,y). Choose vijzv and set

vi= v U {v,.}.
ij

Extend the coloring C;, C;, C3 of V to the new edges of V' as follows:
(We only treat (vij,z) since edges (z,vij) are assigned to the "paired"
color.)
(1) (vij,x)SCé(i) and (vij,y)8C3,
(2) for z#x,y the color assigned to (Vij’z) depends on i,j,k;
(1) 1if (i,3,k)=(1,1,1) or (2,2,2), put (vﬁ,z)ecf if z has
type (1,2) and in ¢} if z has type (2,1).
(1i) 4if (i,3,k)=(2,1,1) or (3,1,1), put (Yﬁ,z)ecf for z with
type (1,1) or type (1,2).
(iii) 4if (i,3j,k)=(2,1,2) or (2,3,2), put (Ya,z)ecf for z with
type (2,2) oxr (1,2).
(iv) if (i,j,k)=(1,2,1),(1,2,2), or (1,2,3), put (gﬁ,z)scw

for all =z.
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(v) if (i,3,k)=(1,3,3), put (yﬁ,z)&C{ for z with type (1,2)
and in Cf for z with type (2,3).

(vi) if (i,3j,k)=(3,2,3), put (Yﬁ,z)scf for z with type (1,2)
and in ¢} for z with type (3,1).

(vii) if (i,3,k)=(3,1,3), put (gﬁ,z)ec; for z with type (1,2)
or (3,2).

(viii) 1if (4i,3,k)=(2,3,3), put (Yﬁ,z)ecf for z with type (1,2)
or (1,3).

(ix) put (gﬁ,z)scg in all other cases.

The definition above gives a partial scheme V'= (v',¢f,C?,C4%  This
scheme clearly realizes the given triangle (i,j,k) on (x,y) so it
remains to show that V' forbids K. Suppose {u,v,w} determines a
triangle in V'. We may assume one of the vertices is Yﬁ since V
forbids K; moreover, since (i,j,k) is not forbidden, we may assume at
least one of the vertices is not x or y. This leaves three possible
cases:

(a) {u,v,w}={gﬁ,x,w} where wevV~{x,v};

(b) {u’v’W}={Yﬁ’y'W} where wev~{x,v};

(c) {u,v,w}={gﬁ,v,w} where v,weV~{x,y}.
We show the triangles realized in V' in each of these cases are not
in K.

case (a).

Suppose i=1. If (Yﬁ,w)acf, w has type (1,2) with respect to (x,y) so
the realized triangle is (1,1,1) which is not in K. No triangle in X
can be produced if (Yﬁ,w)sch and if (Yﬁ,w)scf, (x,w)EC; which again
precludes any triangle in K. Now suppose i=2. If (Yﬁ,w)ecf then (x,w)

is never in C3; so a triangle in K is not produced. Likewise if




(Yﬁ,w)EC; then (x,w)e&C, and if (%j,w)ecg then (x,w) is never in C;; so
again these conditions rule out producing a triangle in XK. Finally
suppose i=3, If (gﬁ,w)scg the triangle cannot belong to K. If (Yﬁ,w)
is in C{ then (x,w) is never in C; and if the edge is in C/ then (x,w)
belongs to C3. 1In either case no triangle in X results. Thus, we have
seen above that no triangle in K is introduced by means of u,v,w in
case (a).

case (b). This case for a given (i,3j,k) is the same as case (a) for
triangle (€(j), €(i), €{k)), so no triangle in K can be realized in this
situation.

case (¢).

We first consider the case where both (Yﬁ'v) and (Ya,w) are assigned
the same color, say Cr' No triangle in K is possible if r=2 or r=3.
In case r=1 the only way to produce an element of K would be for (v,w)
to belong to C3. This never happons when v,w have one of the types:
(1,2), (2,2), or (3,2). 1If either v or w have type (1,1), then (by
clause (ii) defining the assignment) one of v or w has type (1,1) while
the other has type (1,1) or (1,2). In either case (x,v), (x,w)eC;, so
(v,w) £C3. If either v or w has type(l,3), then (by clause (viii) )
(x,v), (x,w)€C;. Since {v,x,w} determines a (2,1,-) triangle in V,
(v,w)£C; . Hence no triangle in K can be produced when the same colors
are assigned to both (Yﬁ,v) and (Yg,w).

Now suppose these edges are assigned different colors. In place
of writing out the details as above we present diagrams which reveal
the forced relationships among the types of elements (with respect to
(x,y)) and Yﬁ' We refer to this graph as a diagram for Yg. A vertex
Cl? in the diagram denotes a point in V with type (a,B) with respect

to (x,y). The lable r next to such a vertex indicates the edge (Yﬁ,z)
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is in Cr for all z with the indicated type. An edge between two
vertices of the diagram indicates the way in which the edges between
the corresponding types are colored. A solid edge means the corre-
sponding types are connected by a C;-edge, an arrow —>— indicates
a C, ~edge (the reverse direction is automatically in C; ), and a dashed
arrow --—}— — means C;UC; (i.e.,all except C;). For example, in the
\ill diagram below, if u has type (2,1) and v has type (1,2), the edge
(u,v) must be in C; while (v,u)eC,. This is easily seen since X has
type (1,1)with respect to the edge (u,v). This forces (u,v)eC; since
triangles (1,1,2) and (1,1,3) are forbidden in V. If w has type (3,3),
(v,w) is not completely forced; it may be either in C; or Cs but it is
forbidden to be in C;. We now return to the proof.

If k=1 there are three possibilities for (i,j):

(1,1), (2,1, (3,1).

[All new edges are assigned to C! in case (i,j)=(1,‘2) and all are in Cf
if (i,3)=(3,3)]. To check whether a triangle in K is introduced in the

(1,1) case construct the ‘ﬁ_]i diagram.

vl
11

diagram

First observe that the assignments will not produce a triangle in
K if (Vi_j'v) £C¢ and (\S._j,w) is qne of the other types. Similarly, if
(Vij,v) eCy and (vij,w)ac;.;' the triangles that result are not in K. The
same conclusion can be verified for the other two choices of (i,3)

using the diagrams for '\721:L and ‘/'311 .
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qpl
13
Y

€

3

1
v31 diagram

The case where k=2 is dual to the k=1 case. For k=3 there are
two cases (up to symmetry). The diagrams of relationships are given

below.

From the diagrams above we can check that no triangles in K are

introduced by case (c) using the assignments of V'. Hence we conclude

that V' forbids K which completes the verification of (*) for Ni. Thus

by THEOREM 1 N; is chromatic.
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TABLE 1

Ne Jo 1 2 3
ojo 1 2 3
1|1 1 o123 3
202012 2 23
303 13 3 0123
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Ns |0 1 2 3

0
1
2
3

o 1 2 3
1 123 0123 23
2 012 123 123
3 123 13 0123







