e ——— e e .

———————— e

4

Lech Nty we MM L wo | tovY #
U:NJI;::) M‘(Qi'w oud Lathan m%(?ﬁﬂ@)hﬂ) Z/

. Y- 103 1192

EXTENSION OF POLYGROUPS BY POLYGROUPS

AND THEIR REPRESENTATIONS USING COLOR SCHEMES

Stephen D. Comer®

In this paper we introduce a construction for building a "big" polygroup from
two "small" ones and show that the important classes of polygroups are closed under
this construction., In general, it is very hard to determine whether a given polygroup
is chromatic or not. A sufficient condition was given in Section § of [2] and gener-
alized in {3]. The comstruction hera gives an easy way to show that a large number
of polygroups are chromatic. In view of Theorem 5 perhaps the product W] could be
called the wreath product of % by B,

To maka the papar reasonably self-coutained basic definitions are collected in
Section 1. The product constructionm U8l is described in Section 2. Section 3 contains
the main results, namely, that the Product operation HW] preserves various properties.
For example Theorenq 2 and 6 show that polygroups ¥ and B are chromatic iff B is
chromatic. An easy spplication of the product constructionm to the study of relation
algebras is given in Section 4. '

1. PRELIMINARIES. Ve recsll a few basic definitions from (2],

A palygroup is a system !R-(M,-,.,‘l) vhere ec)M, -1 is a unary operation on M,
. meps M2 into nonempty subsets of M, and the following axioms hold for all X,¥.2 & M2

® (%+y) ez = %+ (ye2) . . '

(Pz) X:@ = x = goxg ‘ .
®,) xey-z 1mplies yexe.z ! and ey iz,
Many important polygroups are derived from color schemes, a notion that extends D.G.
Higman's homogeneous coherent configuration (see [5]). Suppose C is a set (of colors)
and ¢ 1s an iavolution of C. A color scheme is a system Ws(v.cg acc Vhere

1) {C, : a&C} 4s a partition of V2-1d = {((x,y) eV2: x 2y},

* Research supported by NSF grant MCS-8003896 and by the Citadel Development Founda~-
tiom. :




(11) C; = Ct(a) for all a¢C,
(114) for each color and vertex the color is present on some edge from the
vertex, '

(iv) for a,b,ceC if (x,y) ¢ Cc the existence of an (a,b)-path from x to y is
independent of the choice of x and y, in symbols,

c.n(clc) « ¢ = c.sc,lc,.

Given a color scheme %, choose a new symbol IgC. (Think of I as the identity rela-
tion.) The algebra (color algebra, or configuration algebra) of % s the system

%- tcufrl, -1, -h

vhere & l= ¢ (a) for acC, I la I, xI=x=1I.x for all xeCu{l}, and for a,b,
and ¢ in C,

- . e homa} .
asb {ccC.C‘__c_:caIC.b JU{I : b =a ).
A polygroup 1is chromatic if it is isomorphic to the algebra of some color scheme.

A natural example of a chromatic polygroup is the system G/H of all doﬁble cosets
of a group modulo a sqbgroup H. Namely,

1

G/ = {HgH : geG},+, H, )

where (HgH):(Hg'H) = {Hghg'H : hc¢H) and (HgH) '= Hg™'H. That these systems are
chromatic was established in [2]. The double coset construction generalizes to the
idea of a double quotient., This idea will not be needed in this paper for a general
polygroup but only for' ordinary gtotq;-. The geﬁeral notion (see [2]) is equivalent
to the following when restricted to groups. An equivalence relation § on a group G
is called a comjugation on G if o ‘

W @07l ox!  for all x, and
(11) f(xy) < (#x)(#y) for all x,y¢G.
The natural quotient system G/ ¢ is a. chromatic polygroup ({2]) and we define
Q*(Group) = { G4 : & is a conjugation on some group G}.
A conjugation & is called special if it satisfies
(1.11) xfg => x=e,

The class of all polygroups isoworphic to double quotients of groups via special con-
jugations is denoted by Qi(Group). '

2. AN EXTENSION CONSTRUCTION. Suppose % and B are polygroups whose elements
have been renamed so that ANB = {e} where e is the (common) identity of both ¥ and
B. Weuse M todenote { xcM:x #e}, the non-identity elements of a polygroupN.
A new system HB] = ( M,%, e,I), called the extension of 4 by B, is formed in the
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following way. Set M = AUB ule} and let eI-e, xI-x“1 (in the appropiate sys~

tem), e»x=xwe=ax for all x¢M, and for all x,yaM.-,

S S —

Xy if x,yeA ‘ l
X if xeB, yeA '

X4y = y if xecA, yeB :
x°y if  x%,y€ B, y#x-l

X YUA if x,y¢ B and y-x-l.

In the last clause, e occurs in both x.y and A, If A-(e,al,a } and B =

}, the table for ¢ in Y[B] has the form

greee

{e,bl.bz,...
e al a, - . b1 bz . e e
e e ‘1 32 PR bl bz P
ay a, aa, ‘182 PR bl b2 . e
a, a, a,3, a3, . . . b1 1::2 . e e

hl b1 bI b1 PN bl'bl bf'bz . e
b2 bz bz bz . s e bz’bl bztbz . o e

Several special cases of the algebra Y[Bl are useful. Before describing them
we need to sssign names to the two 2-element polygroups. Let 7 denote the group 22
and let 3 denote the polygroup 831( (12)) = 231 6 where ¢ is the special conjuga-
tion with blocks {0}{1,2}. The sultiplication table for 3 1is

o 1
0 o 1
1 0,1

The names 2 and 3 are suggested by the color schemes that represent the algebras

(see Section 3).

EXAMPLE 1. Adjoining a new identity element.
The system 393 is the reault of adding a "new” identity element to the poly-
group . The system 2(9M 1s almost as good. For example, suppose R is the sys-



tem with table

Then
0 a 1 2 0 a 1 2
00 a 1 0 0 a 1
af{a Oa 1 2 a a 0 1
111 1 Qa2 12 1 1 1 Qa2 12
212 2 12 Oal 2 2 2 12 Oal
3R ) 2[R]

The element "a" acta like the "old" identity on R.
EXAMPLE 2. Adding a "last" element.

In section 20 of {[1] two non~fsomorphic one-element extensions of a-polygroup
9% were introduced. In the present terminology these algebras are just T[2] and
Pe[3]. For example, the tables for R[?) and R3] are given below. '

0 1 2 a 0 i 2 a
010 1 2 0 0 1 2 a
1]1 02 12 1 1 02 12 a
212 12 (433 2 2 12 01 a
afa a a 012 a a a a 012a

R(2) R3]

EXAMPLE 3. As an example of ¥[®B] where neither ¥ nor B are minimal systems we
consider R[R] whose table is given below.




0 1 2 a b
0 0 1 2 a b
1 1 02 12 a b
2 2 12 01 a b
a a a a 012b ab
b b b b ab 0l2a

. We finish this section by showing that the extension construction will always
yield a polygroup. ’

THEOREM 1. H{B] 28 a polygrowp.

Proof. Since (Pz) is clear it is enougk; to check (Pl) and (P3).
(Pl) : (xey)ez = xn(y*xz),

Without loss of generality we may assume x,y,z+*e and not all elements belong
to A. Note that
(1) 4fueB and veA, themn usv -.vtu LIRTH

If exactly one of x,y,z belong to B, then (1) implies that both sides of (Pl)
equal the element in { x,y,z }JnB. If exactly two of x,y,z belong to B, say u and v,
then (1) ifmplies that both sides of (P)) equal uev. We assume x,y,z¢ B~ and show

" (2) ue (xsy)ez implies u¢ x*(y*z).

If ufgA, then uvuEwsx for some we xey. Now, 1f wfA, wexy and utwez so
ue (xy)z = x(yz) (in B) ¢ xe(ysz).
Also, if weA, utwez = z (80 u » z) and e ¢xy. Thus,

ww 3zt (xy)z= x(yz) ¢ x*(y*z).
1

Now, suppose u¢A. Then +h %%y, :.lﬂA #0 z '€xy (in B), so et (xy)z = x(yz).

Thus,

x.lc ¥z y*z and hence ut A & xw(y=z).
The proof of the opposite inclusion xe=(y#z) € (x*y)*z is similar to (2).
(P3) s xty»sz implies ye¢ xtzI and z¢ yIaz.

The condition is clear if x,y,z¢A. Since xtB implies y or z belongs to B
and x¢A implies z:B-, we may sssume at least two of x,y,z belong to B . On the
other hand, if x,y,z¢B , then x¢y®z dwmplies xty-z (in B) from which (P3)
follows. Therefore we may assume exactly two of x,y,z belong to B . This reduces to




two cases.
(3) x¢&ysz where x,y¢ B~ and zé&A.
By (1), y*z=y so x=y; thus y-x-xxtz-1 using (1) again and ztA < x-lﬁx
- y‘ltx.
(4) x&y*z where xz¢€A anﬂ y,zeB-.
In this case y = z“1 s0 the desired conclusion follows using (1). This completes

the proof of‘(PB) and hence the theorem.

Where there is no confusion possible we writex= . and I --1.

3. PROPERTIES OF HU(®]. . The first result shows that the extension of # by @

preserves being chromatic.
THEOREM 2. Ifazfmg/and %::?Jtr then HU[@B] is also chromatic.

Proof. Suppose ¥= (V,Ca)“A-. First introduce a family of pairwise disjoint
color schemes {9, : veW} where each %, is isomorphic to 9. Assume the vertex set
of 4}6 is Vw and the isomorphism of % onto ‘)‘/, sends x to X, We construct a
scheme %’[9”] in the following way. Replace each vertex w of the scheme # by the copy
of 9 with vertex set Vw. Thus the set of all vertices of #[#] is just the union '
of all V"'s. An edge coloring using the elements of ‘ AU B~ as colors is introduced
in the following way. For atA and beB let

(x“.yv) [ c‘ 1ff usmv and (x,y)¢ C‘i (in "}G) »
(xu,xv) 4 cb 1£f (u,v) ¢ cb (in #).
It is easily seen that 97{9] is a scheme that represents Y[®B].

The converse of Theorem 2 will be established later (Theorem 6).

The constructiom given in the proof dbova can be carried out in practice. The
idea is to taks a color scheme representing $ and "blow-it-up’. by replacing each
vertex by the configuration that represents ¥. A2 an illustration we use this method
to produce representations for the systems Z2([R]l, 3(R], R(2), R(3], and R(R]
given in Examples 1,2,3. The systems 2, 3, and i} have representations given as

follows.




e e

e+ et ot e s g = S

The method of Theorem 2 yields:

RIR]
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The next three results show that various important special classes of chromatic
polygroups are closed under the extension operation H[®]. Several types of proofs
are offered. The approach via automorphism groups, illustrated by the proof of Theorem
3, could be used to establish all three theorems. A more concrete approach is used
to prove Theorems 4 and 5. When using a special representation of a polygroup it is

often convenient to explicitly give the groups and/or conjugations involved.
THEOREM 3. If %, ® ¢ Q2(Group), then H[(Ble Q?(Group).

Proof. Recall (Theorem 4.1 of {2]) that for a polygroup m,

*) Me Q% (Group) 1ff MG?[QG)/ vhere Aut(9”) is transitive on vertices.

Suppose uz‘mq,, $=‘m’,, and 9/[¥] is the color scheme constructed from Y and ¥
in the proof of Theorem 2. Autoworphisms r on % and @ on # induce automorphisms
on (¥} in the following way. '

(1) For oc Auc(F) define & on F[¥#] by &(xw) " Xy (w) for all weW.

(11) For 7¢ Aut(P") and we W, define ;’" on [¥] so that ?w acts like 7 on
. %, and 1s the identity otherwise. ‘
it is easily seen that the maps § and ;w described in (1) and (i1) are automorphisms
of 1F]. From (*) we may assume Aut(P) and Aut(P) are transitive. Using wmaps of
type (1) and (i1) it easily follows that Aut(Z[#1) 1is transitive on vertices so (*)
yields the desired conclusiom. ' :

THEOREM 4. If 4,9 tQi(Gtoup), then H(B)e Q&(Group).

Proof. Supposs H= Gl”l and B - GZ"Z vhere 01 and 02 are special conjugations

on G1 and G2 respectively. Let G = Giz G2 and define & on G by
(sl.zz)O (si'xi) 1f£ (zz-gi-ennd glolgi) or (32,35*e and 320235).
Note that the #-classes are .
_0(g,0) = { (h,e) : ¥ g }
and, for h4e, .
#(e,h) = { (g,h") : h'O,h }. ,
To show 0 is a special conjugatiom, conditions (1), (4i), and (iii) need to be checked,
Pirst, (1i1) holds because 01 special implies 0(e,e) = {(e,e)}. Also 1), O(g.h)-l-

(U(g,h)).1 ’ holds since ’l and 02 have similar properties. It remains to check

(1) 8( (8)sh,) (8y0h) ) € (O(8;,h1)) (Bgy,hy) ). |
Suppose , (g,h) e & 3132’h1h2) - 8( (81"‘1) (gz.hz) ). The §efinition of 0 gives two cases:
Case 1. h = h1h2 = e and g’l(glgz). ‘

Since 01 is a conjugation, [ gigi for some gialgx and gé 01 8y Then
(g,e) = (gi,‘hl)(gé,hz) so it suffices to show that '(gi,hi) 0(31,)11) for i=1,2. The
conclusion follows from gi%gi when hl-hz-e while it follows from hiozhi if




hl . hz % e,
Case 2, h, h1h2 # e and hﬁz hlhz .

Since 02 is a conjugation, h-hihé for some hi92h1 and hé 02112. _This yields
(8’hi)o(gl’h1) and (e,hé)a(gz.hz) whenever hi,hé #e; 8o

.

(8:h) = (8,h]) (e,h3) € (8(g,,h,)) (8g,,h,)).

On the other hand, suppose one of hi, hé i3 e, say hi-e and hé-h#e. Then
(gl,e)e(gl,hl) and (g;lg,h)o(gz,h) since h#e from which it follows that (g,h)
belongs to (9(81,111))(9(82,112))-

Thus, & is a special conjugation on the group Glx Gz. A bijection F between
the elements of Y[B] and Glx 62 78 1is defined in the following way. Let F(e) =
8(e,e) and, for 1-0131 *e in A let

F(a) = a(BIve) ’

and, for b = Ong#e in B_, let

F(b) = G(e.sz)-

From the description of the §~-classes above it is clear that F maps ¥[BD] one-one

onto Glx GZIO. By properties (i) and (11) &;f # the inverses and identity elements
correspond. Computations, as in the proof of (11), show that F preserves products in
case at least one factor belongs to A. When both factors belong to B there are two

[] - 1yl
cases. Firse, if 0232, 0232 €3 and 0282‘(9232) » then

T F(8,8,,0)8)) = F({0,8 : esge (8,8,) (0,85 })
= {0(e,g) : g ¢ (8,8,) (8,35)}
= {(h,g) : 8¢ (8,5,)(0,8))}
= (0(e,8,)) (8 (e,8)))

| = F(8,8,)F(4,8,)
Finally, suppose 0232, 0235 €3 and 0235 = (0232)‘1. Then et (8232)(0235) 80
F((0,8,) (8,83)) = F({0,2 : & (88,) ()} L A

= {0e,2) : g€ (0,8,)(0,85)} u (G;x {e])
= (0(e,8,)) (9(e,85))
= F(88,) F(0,3,).

The theorea follows from the fact F i3 an isomorphism.

The next result shows the class of double coset algebras is closed under the
extension coustruction. For information on semi~direct products see M.Hall [4]. The
group ¢ defined below is also known as the wreath product of G1 and GZ’ see a.g.,
H. Reumamnn [7], p.45ff.
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THEOREM 5. If 9SG /H) and B NG IH,, then there exist groups G and #
with G 2 H such that ‘21[%] "‘GI H.

Proof. Let X = G /H = {Hzg 1 8EC, } and let G = Gx © GZ’ the semi~direct ‘
product of G}{ by G2. where w. mapping G2 into Aut:(G ), is the homomorphism given ;

by ¢ (f) = g*f for all chl -
g® i

N4

I.e., 8&G, induces g#*: X — X by right multiplication, so ‘% (£)(x) = £(xg) for

2
chx and x&X. Also, let H-(H xGx {HZ})QH where

1

8¢y,

¢t H, — Aut( ulxc’f 1,3,

2
is defined, as abcve, by \a (£) = gaf,

Note that A =1H @ uz vhere H = {fcc’l‘ £(H)) £ H)}. Clearly B is a sub-
group of G, so it remains to show that ?1[%] = G/A.

First we identify ¥ with part of Gt H. For gsGl let 8 = (f,1) where 1 is

the i&entity element of G, and fccf is defined by

2

g if Hzx-Hz )

e if Hzx » Hz

f(Hzx)k- {

Then, figh = (F e H)(£,1)(F oty
= (Hf @ Hz) (Heo Hz)
= (ifH) @ B,
where the second equality holds because, for he Hz. % fixes the "Hz—coordingte" of
£. Thus, ‘ '
1) (6] @ By 1 = G/H,.
Now we consider the elements in GZ’HZ (=8 ). Por gc\cz let g = (E,g)

wvhere E 18 the identity element of G}f Then

Hg = (He® Bg = H 9 H,2
and, for g¢ H,,
Avor - - X
Hgh = (H @ Hyg)(H @ H,y) = G) @ (H,gH,)
since, for £ ,f, ¢, (fl-fgg) (x) = fl(x)fz(xhg) will produce any element of G}l{.

1’72
(To see this observe that gtﬂz means g*¥ 1is a permutation of X that moves Hz; S0,

for all xe€X, either fl(x) or fz(xhg) can be any element of Gl‘) Thus,

@ &= Ulcjeb : becsn,l.
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A one-one correspondence between the non-identity elements of (GlIHI) [GZ,H2]
;nf {Gfl Hcis introduced as follows: to ‘”fcllﬂl) assig; the element a st where
£G) ¢ f(Hz) ta }and to be (GZIHZ) correlate Gy @ b. In view of (1), to

show this correspondence is an isomorphism it is enough to check:
(3) (HQIH) (HgZH) - ngﬂ for g ¢ Gl' g, [ 3 GZ-HZ,
%) (agzu)(ﬁgln) = Hg,H for 8, £G,, 8,¢G,-H,, and
5 fiz. i) (g, B) = ¢~
(5)  (Hg,H)(Hg,H) = G, ® (H,8,H,2,H,) for g,,8, £ Gy-H,.
To establish (3), let gl- (gi,l). Then

7 A - o =~ He'H x

(g, H) - (Rg,f) = ((HgjH) © Hy) (G @ H,8,H,)

- Gf [ H

- B3,

282

since, for he Hz, %, fixes the "Hz—coordinate" and permutes all others.
The verification of (4) is easier:

Awn A ~ - - x - - X
(g, B) (fig, ) = (6] o Hyg,H,) ((Hg{i) @ Hy) = Gy o Hys,Hy.
Finally we check (5):
(g B) (g ) = (GX & H,g,0,)(CY @ Hog,H) = GF @ (H,8,H,) (Hyg,H,)
1 2 1 @ H28y 7)1 8 Hh8)%) 1 @ (Hp88y) a8,/

It now follows that G/ H & %{®] as desired.

We pow consider the converses of the properties established in Theorems 2,3,4,
and 5. The basic idea for establishing the converses is illustrated by the proof of

the following result.
THEOREM 6. If 9UI®) is chromatic, then both A and B are chromatic.

Proof. Euppou 48] G‘m", for some color scheme F O (w’cx)xec’ Recall
that C » AU B . Define a relation = on ¥ by

w e w 1ff we=vw' or (w.x-v')t:ca for some afA .

It i easily s.een that = i3 an equivalence relation on W and each 2z -block, say
{p) = {w : wm p} for a fixed ptV¥, inherits the structure of a color scheme from #.
The color algebra of this scheme is exactly %; so ¥ is chromatic.

In order to treat B we form a new scheme #/= on the set {[w]:w ew}

ueing the elements of B~ as colors. For distinct vertices [v] and [w] set
(v, vl ec,  iff (v, ECy (in 7).

Since albaz = b holds in H(B] for al,ach and be¢B, it follows that the assign-
ment of a color to the edge ({vl,{w]) is independent of the ~-representation. It

is not hard to check that #7= is a color scheme and Mgy~ = 3] as desired.
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Using the idea above an analysis of the proofs of Theorems 3,4, and 5 give a

hint of how to construct their converses., We leave the details to the reader.

THEOREM 7. If %[ ®] is a double coset algebra ( in Q2{(Group), Qi(croup) ),
then both Y and B are double cosaet algebras - (in Q2(Group), Qg (Group) respectively).

4, AN APPLICATION. We conclude with an easy application of the extension
construction to the study of relation algebras. There are many non-chromatic poly-
groups with 4 elements - at least 28 and at most 34. As one example we cite the

algebra ‘Ro with multiplication table:

0 1 2 3
0 0 1 2 3
1 1 1 0123 13
2 2 o123 2 23
3 3 13 23 012

In view of the connection between polygroups and integral relation algebras (see (2hH
the fact that 9?0 is non-chromatic is just the result of McKenzie {6] that the corre~
sponding relation algebra is non-representable. 9!0 can also be shown to be non-
chromatic by a direct argument.

In Section 2 four extensions, TM[2]1,M( 3], 2{M], and 3[M] were given that
add a new element to a polygroup IR. By Theorems 2 and 6, M is chromatic if and only
if each extension is chromatic. Starting with ‘Ro, McKenzie's example above, we can

obtain a sequence (in fact many sequences) of non-chromatic polygroups. For example,

m{%[Z]. mz "9?1[2]- LERS

Again using the commection {2] bdatween polygroups: and relation algebras we obtainm:

PROPOSITION 8. For all nz4 there exist a non-representable integral relation
algebra with n atoms. |
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