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Combinatorial aspects of relations

STeEPHEN D. COMER'

Abstract. A multivalued algebra called a polygroup is introduced and used to establish connections
among relation algebras, permutation groups, and edge-colored graphs.

1. Introduction

This paper deals with certain algebraic systems that are closely related to
structures that occur in algebraic logic (relation algebras, cylindric algebras), to
group complexes, and to combinatorial properties of regular edge-colored graphs.
One goal of the paper is to illustrate how these areas enrich one another.

The central concept of the paper is a multivalued group-like system called a
polygroup. This special type of multigroup (in the sense of Dresher and Ore [8]) is
defined in section 2 and examples are given to indicate how these systems occur
naturally in various context. In section 3 polygroups are characterized as the
atomic structures of complete atomic integral relation algebras. The Tarski
complex-algebra construction [10] gives a full embedding (and even more) of
polygroups into relation algebras. A variation of this result is true for cylindric
algebras but will not be treated here. The significance of the embedding is that
certain combinatorial and model-theoretic properties of polygroups automatically
transfer to RA’s (and CA’s). This process can be used to provide a simple and
unified treatment of certain model-theoretic/combinatorial results that have been
obtained for both relation algebras and cylindric algebras. For example, Monk’s
work in [15] and [16] turns out to be just two interpretations of a simple
polygroup result. A polygroup treatment of McKenzie’s important work [14] has
been carried out by the author in [7].

In addition to their close connection with integral relation algebras, poly-
groups are important for other reasons. Of particular interest is a class of systems
derived from color schemes (see Example 3). Color schemes generalize the notion
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of (homogeneous) coherent configurations due to D. G. Higman [9] and the
Bose-Mesner notion of an association scheme [2]. In section 4 properties of the
polygroup derived from a color scheme 7 are related to properties of the
automorphism group of V. These ideas are used in section 5 to compute the
polygroups associated with random color schemes forbidding a prescribed class of
colored triangles. The last section comments on two combinatorial questions
about permutation groups using the schemes introduced by Sims [20]. We
determine the possible polygroups of the color schemes associated with certain
rank 4 primitive groups (if they exist).

The author wishes to thank P. J. Cameron, P. M. Neumann and the other
participants of the algebra seminar in Oxford for helpful discussions concerning
the combinatorial properties of graphs and permutation groups.

2. Definition and examples of polygroups

The notion of a polygroup defined below is the same as the concept of a
regular, reversible-in-itself multigroup with an absolute unit in the sense of
Dresher and Ore [8]. However, “polygroup” is shorter. In [5] and [7] the systems
were called pseudogroups by the author. In retrospect it appears the notion has
played a fundamental role for many years. It appears implicitly in the work of
Jonsson [11], Lyndon [12], and McKenzie [13] and [14].

DEFINITION. A polygroup is a system .#={(M, -, ' e) where ee M, 'is a
unary operation on M and - is a binary operation on M such that x -y is a
non-empty subset of M for every pair (x, y)€ M” and the following axioms hold
for all x,y,ze M:

Py (x-y)rz=x-(y-2),
P,) x-e=x=e-x,
(Py) eex-x™' and eex'-x,

(P,) xey-z implies yex-z '

and zey ' x.

The statements above employ some obvious conventions:
(1) For ABcM, A-B=|J{a -b:acA,beB}and
(2) elements of M are identified with singletons to prevent a proliferation of

brackets.

As an example of the elementary consequences of the axioms we mention that
(x "' =x holds for all x in a polygroup. A polygroup in which every element has
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order 2 (i.e., x~'=x for all x) is called symmetric. As in group theory it can be

shown that a symmetric polygroup is commutative.

EXAMPLE 1. Double coset algebras. Suppose G and H are groups with H a
subgroup of G. Form a system (M, -, ', H) where M ={HgH : g ¢ G}, the collec-
tion of double cosets, (HgH) ‘= Hg 'H, and

(HgH) - (Hg,H) ={Hg hg,H : h € H}.
This system is a polygroup denoted by G/ H (Dresher and Ore [8]).

EXAMPLE 2. Prenowitz algebras. Suppose 9 is a projective geometry with a
set P of points and suppose, for p# ¢, pg denotes the set of all points on the
unique line through p and g. Choose an object I'¢ P and form the system

P(g:(PU{I}y ',7],I>
where x '=x and I - x=x-I=x for all xe PU{I} and, for p,qeP,

:{ﬁ{p,q} if p#q
{p, I} if p=gq

Py is a polygroup (Prenowitz [18]). Important combinatorial properties of these
systems were discovered by Lyndon [12] who phrased the ideas in terms of
relation algebras. Other geometries give rise to polygroups in the same way, e.g.,
spherical geometry. In fact, any join space with identity (see Prenowitz and
Jantosciak [19]) is a polygroup.

The following class of examples will be extremely important for us.

EXAMPLE 3. Chromatic polygroups. These system are derived from a very
special type of edge-coloring of a complete graph. Suppose € is a non-empty set
of colors and & is a involution on €. A color scheme is a system V' =(V, C,),c«
where each C, is a binary relation on V and

(1) {C,:aec%}is a partition of {(x, y)e VZ:x# vy},

(2) C.y=Cy for each ae€ (Y is relation converse), ;

(3) each vertex has an edge of each color emanating from it (i.e., for every a ¢ ¢,
xeV, (x,y)e C, for some ye V),

(4) If a,b,ce% and (x,y)e C, the existence of an (a, b)-path from x to y is
independent of the choice of (x, y)e C,.. That is, if C.N(C,|C,)+# &, then
C.< C, | G, where | denotes relation composition.
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The relation C, is thought of as the set of directed edges with “color a” in the
complete directed graph with no loops on the set V. The purpose of the involution
g is to guarantee that the color assigned to an edge (y, x) depends only on the
color assigned the reverse directed edge (x, y) and not on the particular (x, y). It is
convenient to say that colors a and e(a) are paired. In the special case where
colors are self-paired (i.e., e(a)=a for all a), the colors schemes can be
conveniently pictured by coloring the edges of undirected graphs. A system
V' ={V, C, )4 that satisfies (1) and (2) is called a partial color scheme.

Before introducing the polygroup we mention two widely studied special cases
of the notion of color scheme.

A. Homogeneous coherent configurations (D. G. Higman [9]) are obtained by
strengthening (4) as follows:

(4 for a,b,ce¥® and (x,y)ec C, the number of (a, b)-paths from x to y is
independent of the choice of (x, y)e C..

The numbers obtained in (4') are called intersection numbers. They allow these
systems to be studied via matrix algebra.

B. Association schemes (Bose and Mesner [2]) are homogeneous coherent
configurations with e(a)=a for all ae€¥. Among the important association
schemes are those associated with distance-transitive and strongly regular graphs
(Biggs [1] and Cameron and Van Lint [3]).

Now, suppose V ={(V, C,),.« is a color scheme and choose a new symbol
I¢%. (It is safe to think of I as the identity relation on V.) The color algebra of V'
is the system

My ={€U{I}, -, I)

where the inverse is defined by a = ¢(a) for a €€ and I =TI and the product is
defined by x - I=1:x=x for x€€U{I} and

a-b={ce®:C.cC,|CIU{I:b=a"

for a,be%.
It is straightforward to verify #, is a polygroup. A polygroup is called
chromatic if it is isomorphic to a system ., derived from some color scheme V.
The following terminology is convenient. An element of %° is a (colored)
triangle. An edge of V is a pair (x, y)e V? with x#y. A triangle (a, b, ¢) € €> is
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realizable on an edge (x, y) of V' if (x, y) e C.N(C, | G), i.e., for some z we have
the picture

X¢ y

A class K of colored triangles is locally realizable in V' if for every edge (x, y) of
V" and every triangle (a, b, ¢) € K with (x, y) € C,, the triangle is realizable on (x, y)
in V. A class K of colored triangles is forbidden in V' (or V' forbids K) if no
triangle in K is realizable on any edge in 7.

Remarks. 1. Condition (4) in the definition of color scheme means that if a
triangle is not forbidden, it is locally realizable.

2. Given a polygroup #, M’ = M\{e} can be regarded as a set of colors. Then
At is completely determined by a class of colored triangles

FCU) ={(a, b,c)e(M):cé¢a- b}

called the forbidden class of . Note that 4 is chromatic iff there exist a color
scheme ¥ that forbids FC(ut) and locally realizes its complement FC(At)°.

3. In general, if a triangle (a, b, ¢) is realized in a color scheme, so are the
following ones: (g(a),c b), (b, e(c), ea)), (e(b),ela), elc)), (c &(b),a),
(e(c), a, e(b)). When we speak of a class of colored triangles, we assume it is
closed under the above “symmetries.” In case the colors are self-paired this just
means that when (a, b, ¢) belongs to a class so does all rearrangements of (a, b, ¢).
When writing down a class of colored triangles it is convenient to list only one
triangle from among the equivalent symmetric ones.

Example 1 is now generalized.

EXAMPLE 4. Double quotients of polygroups. At times we want to construct
new polygroups as quotients of old ones.

DEFINITION. Let 6 be an equivalence relation on a polygroup 4. Then

(1) 6 is a full conjugation on M if
(i) xfy implies x 'y~ *;
(ii) zex -y and z0z' implies there exist x'6x, y'6y with z'ex’ -y
(2) 0 is called a special conjugation if it satisfies (i), (ii} and, in addition,

(iii) xfe implies x = e.

!
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The following shows that full conjugation is the proper notion.

PROPOSITION 2.1 (Theorem 8.6 in [7]). For a equivalence relation 6 on a
polygroup M, 0 is a full conjugation on M iff the system {0x:xe M}, -, ", fe),
where - and ' are the induced operations on 0-classes, is a polygroup.

The system in Proposition 2.1 is denoted . /|6 and called a (double) quotient
of . Double quotients of groups are particularly important. Let Q*(Group)
consist of all polygroups isomorphic to a double quotient of a group and let
QZ(Group) consist of all polygroups isomorphic to G /@ where 6 is a special
conjugation of a group G.

Some of the ways to obtain full conjugations on a group G are indicated
below:

(a) A congruence relation 6 on G is a full conjugation. G // @ is just the usual
quotient group in this case.
(b) If H is a subgroup of G and we define

x0gy iff x and y generate the same double coset (i.e., HxH = HyH),

then 6 is a full conjugation on G and G /5= G |/ H.

(¢) Define x0y iff x and y are conjugate in the usual sense with respect to a
subgroup H (i.e., there exist he H, y =h ™ "'xh). Then 6 is a special conjuga-
tion. This example generalizes as follows.

(d) Suppose K is a group of automorphisms of G. Define x0y iff y = xo for some
o€ K. This is also a special conjugation on G.

Special conjugations of groups were used by Utumi [21] to obtain important
examples of cogroups.

Analogues of the standard homomorphism and isomorphism theorems are
obtained for double quotients in [7]. As a consequence of these the connection
between double quotients and double cosets can be ecasily seen.

PROPOSITION 2.2. If 6 is a full conjugation on a group G, then e =H is a
subgroup of G and G [|0=(G [ H) [/ ¢ for some special conjugation  on G || H.

Double quotients of groups are related to chromatic polygroups.

THEOREM 2.3. Every polygroup in Q*(Group) is chromatic.
Proof. Suppose 0 is a full conjugation on a group G. By 2.2 6e=H is a
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subgroup of G. Let €={0g:0g#+H}, e(a)=a ' for ac¥, V={Hx xe G}, and
for each a ¥ set

C,={(Hx, Hy)e V*:xy teal.

It is easily seen that ¥ =(V, C,).ce i a color scheme. If cea - b (in G [ 6) and
(Hu, Hv) € C,, there exist re a and s € b with uv™' =rs. Letting z = r 'u it follows
that (Hu, Hz)e C, and (Hz, Hv)e C, so (Hu, Hv)e C, | C,. Conversely, if C. <
C, | C, and x ec, then (Hx, H)e C, so there exists a z ¢ b with xz™' € a. Hence
xcea-b and so cca-b (in G/ 6). It now easily follows that the natural map
from G/ 0 onto ., that sends g to fg and fe to I (=identity of .,) is an
isomorphism.

The color scheme used in 2.3 will be called the regular color scheme represen-
tation of G/ 6. In the case of a double coset algebra G || H Theorem 2.3 can be
strengthened to represent G/ H as J, where ¥ is a homogeneous coherent
configuration (D. G. Higman [9]).

3. Connections with relation algebras

The notion of a relation algebra is due to Tarski. We use the following
definitions from [10], chapter 4. A relation algebra (RA) is a system
(A, +,-,-,0,1,;,%, 1) where (A,+,:,—,0,1) is a Boolean algebra and the
following axioms hold:

R (9 z=x;(y;2),
Ry 1x=x;1"=x,
(Ra) (x39)-z=0 iff (xY;2)-y=0 iff (z;9Y) x=0.

The main examples of relation algebras are systems (o, U, N, ~,
, X2, 1,Y, Ix) where s is a collection of binary relations on the set X that contains
&, X* and Iy ={(x, x): x € X} and is closed under U, N, ~, relation composition
|, and converse Y. Such a system is called a proper relation algebra. A relation
algebra is representable if it is isomorphic to a subdirect product of proper relation
algebras. A relation algebra with the property

x;y=0 implies x=0 or y=0

is called an integral RA (abbreviated IRA). The integral condition is equivalent
to: the element 1’ is an atom. It implies the algebra is simple (see [10]), thus an
IRA is representable if it is isomorphic with a proper relation algebra.
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The complex algebra of a polygroup M={(M, -, ', e) is the system A[M]=
(P(M), U, N, ~, 3, M, -, ' {e}) where (P(M), U, N, ~, I, M) is the Boolean
algebra of all subsets of M and - and ' denote the extensions of the polygroup
operations to subsets.

The complex algebra construction gives a one-one correspondence (up to
isomorphism) between polygroups and complete atomic IRA’s.

THEOREM 3.1. (1) A[4] is a complete atomic IRA for every polygroup M.

(2) For every complete atomic IRA U the system At(N) = (Atq, 3, ", 1°), where
Aty is the set of atoms of U, is a polygroup.

(3) If M is a polygroup and 2 is a complete atomic IRA, then

M= At UAL]) and A=A[AQ)].

Proof. (1) Only (R3) needs justification. If (X - Y)NZ# J, then there exist
acZ, beX, ceY with acb-c. By (Py), bea-c ' so (Z:- Y )NX# . The
other implications are similar using (P,) and (x )" =x.

(2) Observe that a; b and a“ are atoms whenever a, b are atoms. (Py), (P,)
and (P,) follow from (R,), (R,), and (R;) respectively. For (P;) observe that if
acAty, (1';a)-a#0so (a;a") - 1”#0 by (R;) and hence 1’€ a; a since 1’ is an
atom.

(3) The correspondence of x with {x} gives the first isomorphism and the map
that sends an element a € A to the set of atoms x <a gives the second.

Since every IRA is embeddable in a complete atomic IRA (see [10]) we
obtain

COROLLARY 3.2. The class of IRA’s coincides with the class of all sub-
algebras of complex algebras of polygroups.

The class of polygroups forms a category where a morphism from # to &
means that & is isomorphic to a special double quotient of .#. The ‘“‘homo-
morphism” notion corresponding to the double quotient construction is worked
out in [7] but it is not essential here. The class of complete atomic TRA’s can form
a category in several ways. When we refer to this class as a category we intend
that the morphisms are complete embeddings, i.e., embeddings that are com-
pletely additive.

THEOREM 3.3. The complex algebra construction is a functor that gives a
dual equivalence between the category of polygroups and the category of complete
atomic IRA’s.
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Proof. 1t is enough to consider how the morphisms work. If 6 is a special
conjugation on a polygroup ¢, then AL 6] is completely embeddable in AL4].
This is clear since the atoms of [/ 8] (as elements of 4/ 9) give rise to a
partition of M such that {e} is a -class (recall @ is special). On the other hand,
suppose f is a complete embedding of A[N] into A[.u]. For a € M let h(a) be the
unique element b € N such that a € f({b}). Clearly h maps M onto N and h(e)=e.
Moreover, h is a special homomorphism in the sense of [7] and the Fundamental
Homomorphism Theorem gives & == 4t [/ ker h where ker h is a special conjugation
on . Alternately, one can argue directly that & = (/0 where 0 is defined on M
by: x8y iff h(x)=h(y).

The categorical duality in 3.2 gives a way to look at special classes of TRA’s
+ and polygroups.

COROLLARY 3.4. (1) A polygroup A is in QX Group) iff Alu] is group
representable (see [107).

(2) A polygroup M e Q*(Group) iff A[4] is permutational (see McKenzie [14]).

(3) A polygroup At is chromatic iff A[M] has a completely additive representa-
tion.

Statements (1) and (2) are clear using 2.2. The most interesting is (3). If
V' =(V, C,)uce is a color scheme, a completely additive representation on ¥ for
Alat,] can be obtained by assigning each color ae C the relation C, (and
assigning I to Iy) and extending by additivity. Conversely, [.#] is simple so any
completely additive representation corresponds to a partition {R,, :me M} of X?
for some set X. ¥ =(X, R,,)menr is @ color scheme and the RA representation
restricts to give =y

Remarks. 1. The notion of polygroup can be extended by replacing e with a
“set of identity elements.” The resulting systems can be used to characterize all
relation algebras in the same way we have described integral RA’s using poly-
groups in this section. This has independently been worked out by Brian McEvoy
and the author. Inhomogenecous configurations of D. G. Higman [9] give rise to
interesting models of this more general concept.

2. Polygroups can also be generalized by dropping the associative law. In this
case the notion of multivalued loop results. These systems are investigated in [7]
and can be used to characterize integral CAy’s with the help of a “‘cylindric”
complex algebra construction and an “‘adjunction construction” (announced in

[4]).
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4. Automorphism groups of color schemes

The important classes of chromatic polygroups we have met are characterized
in terms of the automorphism groups of color schemes. An automorphism of a
color schemes ¥ =(V, C,)..¢ IS a permutation o of V such that, for all a €%,
x,yeV, (x,y)eC, iff (xo, yo)ec C,.

THEOREM 4.1. For a polygroup M, # € Q*(Group) iff M= M, for some color
scheme V' with Aut (V') transitive on vertices.

Proof. First note that if ¥ is the regular color scheme representing G/ 6
(recall 2.3), then G acts transitively on the coset space V by right multiplication.
Now suppose J is represented by a color scheme V' =(V, Cpaenr With Aut (V)=
G transitive on V. Fix x € V and partition V=J{V, :a e M} where V, ={x} and
V,={ye V:(x, y)e C,} for a#e. Define an equivalence relation 6 on G by:

00"t iff, for every aeM, xceV, iff xre V,.

The 6" -classes correspond one—one with elements of . Namely, a € M corres-
ponds to the 6"-class G, ={occG:x0 'e V,} where, of course, G,, =G, the
stabilizer of G at x. The elements of V correspond in a natural way to cosets of
G,. Namely, for ye V, G,, ={o € G:y =x0}= G, where 7 is any element of G,,.

LEMMA. 6" is a full conjugation on G.

It is easily checked that 8" preserves inverses. We suppose o,=a,0, and
08" oy and show ol =00} for some ;0 o, and o58”0,. Suppose o€ G,,,
o€ G,, and o, € G, We have

X OXTy

X09

in V. For, if (xo,, xa,) € C; for some d, applying o5 yields (xo,, x) e C,; (since
04 = 0,05); but (xa, x)e C, so d = a. Consequently, the colored triangle (a, b, ¢)
is locally realizable in 7.

Now, 08" 0,. Let y =xo{. Since (a, b, ¢) is locally realizable and (y, x) e C,,
there exist z such that (y, z) e C, and (z, x) € C,. G vertex-transitive implies z = xr
for some 7€ Gy,. Choose weG so that xpu =yr = (G vertex-transitive). Now
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(y, x1) € C, implies (xu, x) € C, s0 p € G,,. Since xur =y, both wr and o/, belong
to the coset G,,. Thus, o)=wvur for some ve G, from which it follows that
o4 =0o10h where o) =vu8” 0o, and o4 =10"0, as required.

To finish the theorem we must show the natural bijection that sends a € # to
G,.€G//0” is an isomorphism. First, we check that eca - b iff G, < G,,G,; (so
that inverses correspond). If eca-b (so a=b"" and o€ G,, then (x, xo)e
C,=Cy So 1ly=00"'eG,G,, and therefore G, < G,,G,,. Conversely, if
G, <€G,,Gy, 1y =0ar for some oe Gy, 7€ Gy Since (xo, x)e C,, applying 7
yields (x, xt) e C,. Therefore, (x7,x)e C,-NC, so b=a ..

It remains to show

cea-b it G,.<G. Gy

where we may assume q, b, ¢ # e. The argument from left to right is essentially the
same as used in the last step of the lemma above. We suppose G,. < G,,G,,. By
the product definition in ., it suffices to realize an (a, b, ¢) triangle on some
(x, y)e C.. Choose o such that x=yo (by transitivity of G). Then oeG,. <
G.oGp 50 o0 =7 for some 7€ Gy, € Gy Let z=x7"'. Then we have

X¢ oY

1

in V. Clearly (x, z) € C,. Suppose (z, y)=(x7', xu ') e C, for some d. Apply-
ing T we obtain (x, xu ') € C; from which d = b follows. Thus, c € a - b as desired.

A group G of automorphisms of a graph is called strongly transitive on edges
if, for every pair of edges (x, y) and (u, v) there exist o € G such that xo = u and
yo=v. This is equivalent to G being vertex-transitive and the stabilizer at a
vertex, x being transitive on the vertices adjacent to x. For directed graphs the
notion is the same as edge-transitive but for undirected graphs the notion is
stronger. The next result is a polygroup version of Lemmas 1.1 and 1.2 in
McKenzie [14].

THEOREM 4.2. (1) M is isomorphic to a double coset algebra Iff M = M for
some color scheme V' where Aut (V) is strongly transitive on the edges of each
monochrome subgraph.

(2) M e Q*(Group) iff M =M for some color scheme V for which there exists
G c Aut (V) such that (i) G is vertex-transitive and (ii) G, ={1y} for all xe V.
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Proof. (1) Consider the regular color scheme representing G/H It
(Hx, H), (Hy, H)e C,, both x and y belong to the double coset a; so Hy can be
obtained from Hx by right multiplication by an element of H. Thus, the regular
color scheme has the desired properties. Conversely, if Aut(¥) is vertex-
transitive, 4, = G // 6§ (Theorem 4.1) where G = Aut (V') and each §-block Gy, is
a union of cosets G, (where xr *e V,). G, is a single double coset since G, is
transitive on V.

(2) If # =G/ 6 where e ={e}, the vertex set in the regular color scheme
representing J is identifiable with G and the action of G on G is regular (i.e.,
G, ={1} for all x). Conversely, suppose V' representing . has (i) and (ii). Note
that the definition of 8" in 4.1 and the proof that it is a full conjugation depends
only on G being a transitive subgroup of Aut (¥). Thus (i) implies #=G /6 and
(i) implies 6 is special.

5. Random color schemes with forbidden triangles

In section 3 relation algebras were related to polygroups, representable RA’s
with chromatic polygroups, etc. In this and the following section we give some
examples to show that polygroups can produce new results, new insights, not only
for relation algebras but in other arcas as well.

In [7] all polygroups with at most 4 elements are determined. The author has
now examined the 102 isomorphism types of 4 element systems and, in all except
6 cases, has determined whether or not the system is chromatic. Several general
techniques have evolved from this study. As a sample, one method, which
generalizes the idea of a random graph, is presented here.

For convenience assume the set of colors involved is € ={1,...,n} and the
given involution g carries i to i'. Suppose V' =(V, C});.¢ is a color scheme and
K< C? is a class of colored triangles. A sequence Fi, ..., F, of subsets of V is
compatible with K if it is not the case there exist i,je%, ueF, veF, with
(u, v)e C, where (i, j, k)e K. (Of course, i =] is allowed.)

A color scheme 7 is called a random n-color scheme with forbidden K if

(i) no triangle in K is realized in 7',

(i) for every sequence F,, ..., F, of n finite pairwise disjoint sets of vertices
compatible with K, there exists a vertex p such that for every ie € and ve F
(v, p)e C; (and of course (p, v)e G)).

A standard Cantor back-and-forth argument yields.
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THEOREM 5.1. For a class K of colored triangles, any two denumerable
random n-color schemes with forbidden K are isomorphic. Moreover, the auto-
morphism group of such a color scheme is strongly transitive on the edges of each
monochrome subgraph.

For 4.2 we obtain

COROLLARY 5.2. The color algebra of a random color scheme with forbidden
K is a double coset algebra.

The following provides an easy sufficient condition for a polygroup to be
represented by a random color scheme.

THEOREM 5.3. A random n-color scheme with forbidden K exists if K
depends on at most n—1 colors (i.e., one of the n colors does not occur in any
triangle of K).

Proof. Suppose the triangles in K involve only the colors 1,...,n—1. (ILe.,
color n is not used. Using the symmetries, n’ is also not used; of course, n’ could
equal n depending on the involution.) Start the construction with a trivial partial
color scheme, say

(Vo, CY, ..., C
where

Vo=1{vo, v1},  (vg, v) € Cy
and

(v, o) € Cyy..

The other C{’s are empty. By induction suppose we have a finite partial color
scheme (V,,C%, ..., C5 =7, with the property that no triangles in K are
realized in 7. Let

F={(Fy,....,FE)e®(V)":F,...,F, are compatible with K
and {F,,...,F,} partition V,}.

For each F=(F,,...,F,)e % introduce a new point vz and set

Vi1 =V, Ulvp : Fe &}
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Order the elements of F={F"', ..., F™}. Now, for i<n, i#n’, set

Ci"'=CiU{(p, vp): Fe % and pe F}U{(vs p): Fe F, peF}
Ck =CkU{(p,vp): Fe F, pe F}U{(vg p): Fe F, p e F,} U{(vpr, vp) 1 7 <5}
Cy 't =(CihY.

No triangles in K can be realized in
Vk-i-l :<Vk+13 Cll(+19 ey CI:L'H>

so we may continue the induction. It follows that V =J;,, V; is denumerable and
the system (V, Cy,..., C,), where C,=J,-, C! (for i=1,...,n), is a random
n-color scheme with forbidden K.

Remarks. 1. The notion of a random color scheme forbidding J agrees with
the usual idea of a random coloring (a random graph in case n =2).

2. The condition in 5.3 is not necessary (pointed out by P. J. Cameron.) For
example, the 2-color scheme for the pentagon

is random with forbidden class K ={(1, 1, 1), (2, 2, 2}}. There are other examples
as well.

6. Connections with finite permutation groups

In view of 3.4 the results in section 5 have obvious applications to the study of
relation algebras. In this last section we want to indicate how polygroups can also
provide information about finite permutation groups.

For a brief introduction to the relation between permutation groups and
edge-colored graphs the survey by P. M. Neumann [17] is recommended. We
recall a few basic ideas. Suppose G is a transitive group of permutations on a set
V and that A,,...,4,_, are the orbits of G acting pointwise on VXV where
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Ay={(x,x):xe V}. For an xeV, the relationship I, ={y:(x, y)e A} gives a
one-one correspondence bétween the orbits 4, ..., A4A,_; and orbits Iy, ..., I,
of the stabilizer G, acting on V. The I}’s are called the suborbits of G and the
numbers n, =|I'}| are called the subdegrees of G. I'y=1{x} is the trivial suborbit and
no=1. The number of suborbits (=number of orbits of G acting on VX V) is
called the rank of G.

The G-orbits Ay, ..., A,_, give a partition of V>~ A,. We regard these sets as
a collection of colorings for the edges of the complete graph on V.
(V, A, ..., 4, 4)is a color scheme in the sense of Example 3. Since the converse
AP of a G-orbit is again an orbit, the involution & on the colors {1, ..., r—1}is
the natural map 4,4, =A;". The colors correspond one-one with the non-trivial
suborbits and suborbits I} and I';, are said to be paired in agreement with the
terminology for color schemes.

The above color schemes were introduced by Sims [20]. In particular, the
automorphism group of the scheme is strongly transitive on the edges of each
monochrome subgraph (Sims [20], also see Wielandt [23] or Neumann [17]). It
follows (Theorem 4.2) that the color algebra ., of such a scheme is isomorphic
to the double algebra G /| G..

For the applications in mind, G will be a primitive permutation group. A
result of D. G. Higman [9] relates the primitivity of G to a property of the
associated color scheme. Namely, a (finite) permutation group G is primitive on V
iff every monochrome subgroup is connected. As a consequence of Higman’s
result if V is the Sims color scheme associated with the action of G we can tell
from the multiplication table of the polygroup ., whether or not G is primitive.

We now wish to comment on a question about primitive groups raised by P. J.
Cameron (Problem 1 in [17]). Does there exist a (finite) primitive group of rank 4
with two of its non-trivial subdegrees co-prime?

We show

THEOREM 6.1. The Sims color scheme V' of a primitive group G of rank 4
with two non-trivial co-prime subdegrees has color algebra M, isomorphic 1o either
., A3, or A (See Table.) Each of these polygroups are chromatic being

represented by a (denumerable) random 3-color scheme with a forbidden class.

Sketch of Proof. Rank 4 permutation groups give rise to 4 element polygroups,
all isomorphism types of which have been described (Comer [7]). Higman’s
criteria allows us to decide when #,. comes from a primitive group. A result of
Marie J. Weiss [22] (see [17], Theorem 3) implies that if n;, n; are co-prime
subdegrees of G with n;>n;, then i -j is a single value in .. Again, from the
multiplication table it is trivial to tell if a polygroup has such elements. The three
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algebras above are the only chromatic ones that satisfy both Higman’s and Weiss’
conditions. The last statement follows from 5.2 and 5.3 by observing that 2 does
not belong to the forbidden «class of each algebra: FC(A}3) =
{(1,1,1),(1,1,3),(1,3,3),(3,3,3)}, FC(A)={1,1,1),(1,1,3),(1,3,3)} and
FCA={(1,1,3),(1,3,3)}.

Remarks. 1. The notation for the algebras comes from the enumeration in
[7].

2. P. J. Cameron has shown (private communication) that no finite primitive
group can have A3 as its color algebra. Thus, Theorem 6.1 can be improved to
read: the Sims color scheme of a finite primitive group that satisfies the hypothesis
of 6.1 (if one exists) has either A% or A$'? as its color algebra.

The second question we wish to comment on is whether or not there exists a
primitive rank 4 permutation group with a non-self-paired orbit other than the
projective special unitary group PSU(3, 3). PSU(3, 3) acts on a set with 36 points
with orbit sizes 1, 7, 7, 21. We have

THEOREM 6.2. The color scheme associated with a primitive rank 4 permuta-
tion group with a non-self-paired orbit has one of the following polygroup types: c?’
(= type of PSU(3, 3)), CP, CI12, €942, C94%, C2** and possibly C3'** or C15%.
(See Tables.)

Sketch of Proof. Higman’s criteria and the non-self-paired requirement yield
the above polygroups from the classification in [7].

Remarks. 1. The forbidden class of the first 5 algebras listed in 6.2 does not
involve all 3 colors. From 5.3 and 5.2 it follows that these algebras are double
coset polygroups represented by a denumerable random 3-color scheme forbid-
ding the appropriate class. C2'? can be shown to be chromatic but it is not known
whether or not it is a double coset algebra. It is not known whether or not C§'**
and C9?% are chromatic. (Hence it is possible they can be deleted from the list in
6.2). ‘

2. From the existence of the random color schemes above we know there are
denumerable primitive rank 4 groups with a non-self-paired orbit. It would be
valuable to know, for a random n-color scheme V' with forbidden class K, when
there exist a finite scheme W with Ay == My, .

3. It is hoped the results in this section can aid group theorists to solve the
problems mentioned. While the polygroups do not disclose the exact intersection
numbers in a coherent configuration, they do tell which are zero and which are
non-zero.
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Tables. (The identity rows and columns are omitted.)

A% 1 2 3 A2 1 2 3 A2 1 2 3
1 02 123 2 1 02 123 2 1 012 123 2
2 123 0123 123 2 123 0123 123 2 123 0123 123
3 2 123 02 3 2 123 023 3 2 123 023
P 1 2 3 c® 1 2 3 cozo1 2 3
1 303 123 1 23 03 123 1 13 012 23
2 03 3 123 2 03 13 123 2 012 23 13
3 123 123 0123 3 123 123 0123 3 23 13 012
c» 1 23 s 23 o1 23
1 12 0123 13 1 13 0123 123 1 13 0123 123
20123 12 23 2 0123 23 123 2 0123 23 123
3 13 23 0123 3 123 123 012 3 123 123 0123
cuB 1 2 3 cuB 1 2 3
1 123 0123 123 1 123 0123 123
20123 123 123 2 0123 123 123
3123 123 012 3123 123 0123
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