COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 43. LECTURES IN UNIVERSAL ALGEBRA SZEGED (HUNGARY), 1983.

EPIMORPHISMS IN DISCRIMINATOR VARIETIES STEPHEN D. COMER*

The purpose of this note is to show that epimorphisms are onto maps in certain discriminator varieties. After the proof several corollaries and an example are presented.

THEOREM. Suppose V is a discriminator variety such that the class V_s of all simple members of V has the amalgamation property (AP) and the property (ES) that all epimorphisms are onto maps. Then V satisfies ES.

Terminology and notation that is not explained can be found in WERNER [6]. First, we present a lemma that gives a useful characterization of onto homomorphisms in a discriminator variety in terms of maps between the standard sheaves associated with the algebras in the variety. Essentially, we characterize the "sheaf concept" dual to an onto homomorphism.

Recall, from [6], p.41ff, that for $f: \underline{A} \to \underline{B}$, maps $f^+\colon \operatorname{Spec}\underline{B} \to \operatorname{Spec}\underline{A}$ and $f^*\colon \operatorname{Spec}\underline{B} + \underline{S}(\underline{A}) \to \underline{S}(\underline{B})$ are defined as follows:

- (1) $f^{+}(\Phi) = f^{-1}(\Phi)$ for $\Phi \in \operatorname{Spec} B$, and
- (2) $f^*(\Phi, \alpha/f^+(\Phi)) = f(\alpha)/\Phi \text{ for } \Phi \in \text{Spec}\underline{B} \text{ and } \alpha \in A$,

This paper is in final form and no version of it will be submitted for publication elsewhere.

^{*} Research supported in part by a grant from The Citadel Development Foundation.

i.e., $f^*(\phi,-)$ is the natural embedding of $\underline{A}/f^+(\phi)$ into \underline{B}/ϕ .

The pair $(f^{\dagger}, f^{\dagger})$ is the sheaf morphism associated with f. Proposition 4.8 of [6] gives some useful properties of f^{\dagger} and f^{\ast} .

LEMMA. $f: \underline{A} \rightarrow \underline{B}$, f is onto \underline{B} if and only if

- (i) f^{\dagger} is one-one, and
- (ii) for each $\Phi \in \operatorname{Spec}\underline{B}$, $f^*(\Phi,-): \underline{A}/f^{+}\Phi \to \underline{B}/\Phi$ is onto.

PROOF. (\Rightarrow). First assume that f is onto B and consider (i). Suppose $\Phi_1, \Phi_2 \in \operatorname{Spec} B, f^{\dagger} \Phi_1 = f^{\dagger} \Phi_2$ and $(\alpha, b) \in \Phi_1$. Since f is onto B there exist $x, y \in A$ such that $f(x) = \alpha$ and f(y) = b. Hence $(x, y) \in f^{\dagger} \Phi_1 = f^{\dagger} \Phi_2$ and so $(\alpha, b) \in \Phi_2$. Therefore $\Phi_1 \subseteq \Phi_2$. By a similar argument $\Phi_2 \subseteq \Phi_1$; so $\Phi_1 = \Phi_2$ and (i) holds. Condition (ii) holds by (vii) of Proposition 4.8 in [6]. (\Leftarrow). Suppose $f: A \to B$ and (i) and (ii) hold. From the sheaf representation of B (Theorem 4.9 of [6]), to $b \in B \cong F \mathcal{E}(B)$ we have $\hat{b} \in F \mathcal{E}(B)$. For each $\Phi \in \operatorname{Spec} B, f^*(\Phi, -)$ is onto so there exist $\alpha_{\Phi} \in A$ so that

$$f(\alpha_{\Phi})/\Phi = f^*(\Phi, \alpha_{\Phi}/f^{+\Phi}) = b/\Phi.$$

Equivalently, $\widehat{f(\alpha_{\phi})}(\Phi) = \widehat{b}(\Phi)$; thus, these two sections agree on some clopen neighborhood U_{Φ} of Φ . Since f^{+} is one-one, continuous there is a clopen $M_{\Phi} \subseteq \operatorname{Spec} A$ such that

$$f^+(U_{\Phi}) = M_{\Phi} \cap f^+(\operatorname{Spec}\underline{B}).$$

By applying compactness to $\{M_{\check{\Phi}}\colon \Phi \in \operatorname{Spec}\underline{B}\}$ and patching

together the resulting finite number of $\alpha_{_{\bigoplus}}{'}s$ there exist an $\alpha{\in}A$ such that

$$f^*(\Psi, \hat{\alpha}(f^{\dagger}\Psi)) = \hat{b}(\Psi)$$

for all $\Psi \in \operatorname{Spec} \underline{B}$. From the representation $\underline{A} \simeq \Gamma \underline{S}(\underline{A})$ it follows that f is onto B.

PROOF OF THEOREM. Assume that V is a discriminator variety in which the class $V_{\mathcal{B}}$ of all simple members satisfies AP and ES. To verify ES in V we consider an epimorphism $f\colon B\to C$ in V and show that f satisfies (i) and (ii) of the LEMMA. To establish (i), assume that $\Psi_1,\Psi_2\in \operatorname{Spec} C$ and $f^{\dagger}\Psi_1=f^{\dagger}\Psi_2=\Psi.$ Let $f_i\colon B/\Psi\longrightarrow C/\Psi_i$ denote the map induced by f and let $\Psi_i^*\colon C\to C/\Psi_i$ denote the natural quotient map. By AP in $V_{\mathcal{B}}$ there exist D and monomorphisms $g_i\colon C/\Psi_i\longrightarrow D$ such that $g_1\circ f_1=g_2\circ f_2$. Thus the following diagram commutes.

Since f is an epimorphism, it follows that $g_1 \stackrel{\text{\tiny Ψ}}{1} = g_2 \stackrel{\text{\tiny Ψ}}{2}$. Now, suppose $(\alpha,b) \in \stackrel{\text{\tiny Ψ}}{1}$. Then $\stackrel{\text{\tiny Ψ}}{1}(\alpha) = \stackrel{\text{\tiny Ψ}}{2}(b)$, so $g_2 \stackrel{\text{\tiny Ψ}}{2}(\alpha) = g_1 \stackrel{\text{\tiny Ψ}}{1}(\alpha) = g_1 \stackrel{\text{\tiny Ψ}}{1}(b) = g_2 \stackrel{\text{\tiny Ψ}}{2}(b)$; but g_2 is one-one, so $\stackrel{\text{\tiny Ψ}}{2}(\alpha) = \stackrel{\text{\tiny Ψ}}{2}(b)$ which means $(\alpha,b) \in \stackrel{\text{\tiny Ψ}}{2}$. Similarly, $\stackrel{\text{\tiny Ψ}}{2} \subseteq \stackrel{\text{\tiny Ψ}}{1}$ so

 $\Psi_1 = \Psi_2$. Thus (i) holds.

Now consider (ii). Assume $\Phi \in \operatorname{Spec} \underline{C}$ and $\Psi = f^+ \Phi \in \operatorname{Spec} \underline{B}$. We need to show the natural map $h = f^*(\Phi, -) : \underline{B}/\Psi \longrightarrow \underline{C}/\Phi$ is onto. Since ES holds in V_s and B/Ψ and \underline{C}/Φ are in V_s it suffices to show that h is an epimorphism. Suppose we have $f_1 : C/\Phi \to \underline{D}$ and $f_2 : \underline{C}/\Phi \to \underline{D}$ in V_s such that $f_1 \circ h = f_2 \circ h$. Since f is an epimorphism and the following diagram commutes,

it follows that $f_1 \circ \Phi^* = f_2 \circ \Phi^*$. Thus, $f_1 = f_2$ since Φ^* (being onto) is an epimorphism. Hence h is an epimorphism, the proof of (ii) is complete, and the THEOREM follows from the LEMMA.

Propositions 1.9 and 1.11 in [4] show that a variety with AP and ES has the strong amalgamation property (SAP). Using the corollary on p.27 of [6] and the THEOREM we obtain

COROLLARY 1. SAP holds in every discriminator variety V for which $\rm V_{S}$ has AP and ES.

An algebra \underline{A} is called *homogeneous* if each proper inner automorphism of \underline{A} extends to an automorphism of \underline{A} . Recall from [6], Theorem 1.14(5), that an algebra \underline{A} is called demi-primal if

(i) $HSP(\underline{A})$ is arithmetical,

- (ii) all subalgebras of A are simple,
- (iii) A is homogeneous, and
- (iv) the subalgebras of \underline{A} are the fixed-point sets of groups of automorphisms.

For $G \subseteq \operatorname{Aut}(\underline{A})$, let \underline{A}_G denote the subalgebra of \underline{A} consisting of all fixed-points of G.

COROLLARY 2. A residually finite variety V generated by finitely many independent demi-primal algebras has ES and, in fact, SAP.

PROOF. Independent demi-primal algebras are demisemi-primal so $V_{\mathcal{S}}$ has AP by [6], p.27. To show that ES holds in $V_{\mathcal{S}}$ assume that $f\colon \underline{C}\to \underline{B}$ is an epimorphism in $V_{\mathcal{S}}$. Without loss of generality assume that $\underline{C}\subseteq \underline{B}\subseteq \underline{A}$ for some demi-primal $\underline{A}\in V$ and that f is the inclusion map $\underline{C}\to \underline{B}$. By property (iv) in the definition of demi-primal, $\underline{B}=\underline{A}_H$ and $\underline{C}=\underline{A}_G$ for some $\underline{H}\subseteq \underline{G}\subseteq \mathrm{Aut}(\underline{A})$. If $\underline{C}\neq \underline{B}$ (i.e., the epimorphism f is not onto), then $\underline{H}\subseteq G$ and there exist $\sigma\in G\setminus H$. Thus, σ and id_B both map \underline{B} into \underline{A} and agree on \underline{C} . But $\sigma\neq \mathrm{id}_B$ which contradicts the assumption that F is an epimorphism. Hence, $\underline{C}=\underline{B}$ and f is onto. The conclusion now follows from the THEOREM and Corollary 1.

The following special case of Corollary 2 occurs frequently.

COROLLARY 3. A variety generated by a demi-primal algebra has ES and SAP.

In particular, Corollary 3 yields the result in [2] that the varieties $I_k Gs_n$, where 0 < $k \le n+1 < \omega$, has ES.

The main effort in [2] establishes that certain cylindric set algebras are demi-primal. The variety of all CA_1 's is a discriminator variety, however, it is not generated by finitely many finite algebras. Since simple CA_1 's are obtained in a standard way from BA's it is easily seen that both AP and ES hold for the class of simple CA_1 's. From COROLLARY 1 and the THEOREM we obtain

COROLLARY 4. CA, has ES and SAP.

The result in Corollary 4 has also been obtained by I. SAIN in [5]. Her proof is based on a universal algebraic result for BA's with operators that does not involve a sheaf representation.

For $\underline{B} \subseteq \underline{A}$ let $\underline{G}_{\underline{B}} = \{ \underline{\sigma} \in \operatorname{Aut}(\underline{A}) : \forall \underline{x} \in \underline{B}(\underline{\sigma}(\underline{x}) = \underline{x}) \}$. The following result provides a method to show that ES fails in a discriminator variety.

PROPOSITION. Suppose \underline{A} is a finite quasi-primal algebra, $V = \text{HSP}\{\underline{A}\}$ and $\underline{B} \subseteq \underline{A}$. Then the inclusion map $\underline{B} + \underline{A}$ is an epimorphism if and only if $\underline{G}_{\underline{B}} = \{\text{id}\}$.

PROOF. The implication (⇒) follows from the definition of epimorphism. For (⇒), assume that $f\colon \underline{B}\to \underline{A}$ is not an epimorphism in V. Thus, there exist $\underline{C}\in V$ and homomorphisms $f_0, f_1\colon \underline{A}\to \underline{C}$ such that $f_0|\underline{B}=f_1|\underline{B}$ and $f_0\neq f_1$, say $f_0a\neq f_1a$ for some $a\in A$. Since \underline{C} is semisimple there is a maximal congruence Φ on \underline{C} such that $(f_0a, f_1a)\not\in \Phi$. The algebra $\underline{D}=\underline{C}/\Phi$ is simple and the maps $g_1=\Phi^*\circ f_1\colon \underline{A}\to \underline{D}$ are monomorphisms. Since $\underline{D}\in V_{\mathcal{S}}\subseteq \mathrm{HS}\{\underline{A}\}$, g_0 and g_1 are isomorphisms of \underline{A} onto \underline{D} . By the choice of Φ , $g_0\neq g_1$; so

 $f = g_1^{-1}g_0$ is an automorphism of \underline{A} , $f \neq id$. Moreover, $g_i \mid B = f_i \mid B$ so f fixes the elements of \underline{B} . Hence $f \in G_{\underline{B}} \setminus \{id\}$ as desired.

The following example can be modified and extended to show that ES fails in several varieties; see [1].

EXAMPLE. Let A denote hte 2-dimensional full cylindric set algebra of all subsets of 2X where $X = \{0,1,2,3,4\}$, see HMT[3], p.166. Every permutation of X, acting coordinatewise on 2X , induces an automorphism of \underline{A} and every automorphism of \underline{A} is obtained in this way. Let a denote the graph of the permutation (01234), b denote the graph of the permutation (02431), d denote the graph of id_X , and $c = {}^2X - (a \cup b \cup d)$. Let \underline{B} denote the subalgebra of \underline{A} generated by $\{a,b\}$. Clearly, \underline{B} is a proper subalgebra of \underline{A} with atoms a,b,c and d. Observe that if the graph of a permutation π is fixed by the automorphism induced by a permutation σ , then σ belongs to the subgroup $\langle \pi \rangle$ generated by π . Since $\langle (01234) \rangle \cap \langle (02431) \rangle = \{\mathrm{id}_X\}$, $G_{\underline{B}} = \{\mathrm{id}\}$. By the PROPOSITION, the inclusion $\underline{B} \to \underline{A}$ is an epimorphism which (as noted) is not onto \underline{A} .

REFERENCES

- [1] H. ANDRÉKA S. COMER I. NÉMETI, Surjectiveness of cylindric algebras, Notices AMS, 4(1983), p.293.
- [2] S. COMER, Galois theory for cylindric algebras and its applications, *Transactions of the AMS*, to appear.
- [3] L. HENKIN J.D. MONK A. TARSKI, Cylindric Algebras
 North-Holland Publishing Co., Amsterdam, 1971.

- [4] E.W. KISS L. MARKI P. PRÖHLE W. THOLEN,
 Categorical algebraic properties. A compendium on
 amalgamation, congruence extension, epimorphisms,
 residual smallness, and ijectivity, Seminarberichte
 Fachber. Math.-Inform., 11(1982), 142-220.
- [5] I. SAIN, Strong amalgamation and epimorphisms in cylindric algebras, Preprint, 1982.
- [6] H. WERNER, Discriminator Algebras, Akademie-Verlag, Berlin, 1978.

Stephen D. Comer
Department of Mathematics and Computer Science
The Citadel
Charleston, SC 29409
U.S.A.