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THE ELEMENTARY THEORY OF INTERVAL REAL NUMBERS

by SrerEEN D. ComEr in Charleston, South Carolina (U.S.A)Y)

0. Introduction and Proliminaries

A model #(R) for the “real numbers” useful in numerical analysis was introduced
by R. E. Moor® [5]. A few years later D. Scorr [8] observed that the structure underly-
ing #(R) could be treated as a data type (or continuous poset) in which the interval
operations are computable. It is natural to ask for characterizations of F(R). In sec-
tion 1 axioms are given for its first-order (elementary) theory. A decision procedure
for the theory is given in section 2; basically a statement is translated into the theory
of real-closed fields for which Tamskr's quantifier elimination method ([10], [3]) is
available. The axioms used in section 1 are somewhat artificial. In the last section
a more natural set of axioms is developed (regarding the models as “data types”).
While the proposed notion of a partial real closed field is still subject to some artifi-
ciality, it can certainly serve as a basis for additional axiomatic, algebraic, and model-
theoretic investigations of domains like .# {R).

Let I(R) denote the set of all compact real intervals. For any operation x € {+, -, —}
and 4, B eI(R) define A« B = {axb:aecd be B}. We identify one element inter-
vals with real numbers, ie., [@,a] = a, so R is embedded in I (R) in such a way that
all operations are preserved. There are several ways to introduce an order relation
on I(R). We defihe: [a, b] < [¢, d]iff b < c. Also, for 4, Bel{R): A < Biff A < B
or A4 = B. Another ordering that plays an important role is the relation == that means
“Is approximate to”. For 4, BeI(R): A = B iff 4 o B. The idea is that smaller
interval contains more information. The basic model for interval analysis intreduced
and studied in [5] and [6] is the system JR) =JR), =, +, —,,0,1, <>,
{I(R), &) is essentially a domain in the sense of Scorr ([8], [9]); the difference is
that Scort’s continuous poset contains one more clement — the unique “bottom ™’
element . The maximal (alias “perfoct”, alias “total ) elements of the domain are
precisely the ordinary real numbers and +, —, - and < are all computable.

We will be discussing .#(R) in two first-order languages with equality. The first has
4+, —,0,1, and < as non-logical symbols while the second language contains, in
addition, the symbol =. Of course the languages may be enriched by introducing
d@fined symbols. For example, « < Y, © = min{y, z, 4, v}, and Rx. These are de-
fined as: 4

Ty itf z<yora=y; ’
z = min{y, z, u, v} iff @=y&y<z&ysu&y<v)v...v
=v&vy&v=<2&v < u);

Rz i o2+ (—x)=0.

Other standard notions such as z = max {y, z, U, 7)} will be introduced without mention.
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Tor a system A4 = (M, +, —,, 0,1, <> where RO and R1 hold, let R“® denote
the relativized system (R, +',—',+,0,1, <’> where #' denotes the restriction of ‘
the operation * to R" = {ae M: Ra holds in .#}. For cxample, observe that
RU®) = #, the ordinary field of real numbers.

1. Axioms for the Theory of Interval Real Numbers

The statements we use to characterize the elementary theory of #(R) will consist
of two collections of axioms. First, let 2z be any set of statements with the property
that, for any model .# of Xp,, R is elementarily equiv(xlent to R, the ordinary real -
numbers. One way to produce Xz would be to relativize one of the standard sets of
axioms for real closed fields to the predmato Rx (see, e.g., [2], [Sj or [4]). In sectlon 3
an alternate set of axioms is given.

The statements (I,)—(I,) given below are called interval axioms. Let X; denote the
set of these axioms. o Y

(1)) Vv Jz E]x[Rx&Rm&Vt(("c <toiFat&it<zol<a)l

Before preceding, observe
Lemma L. 2y v {(L, )} implies (1) both & and g are unique, and 2)zs®
Proof. Immediate from trichotomy law and ( )

Lemma 1 justifies the addition of unary operations z zmd Z Lo our language. They
will be used freely in the remammo axioms.
() VyVeRy&Re&y <z Jufe =y &7 =2)],
(I,) VaVyle=y&T=7—>a=yl ‘

Axioms (I,) and (I;) immediately yield

Lemma 2. Thew asserted to exist in (1,) is unique. For each y and z with y < 2 denofe
this unique element by yiz. \

To see that the axioms so far describe every element as a pair of “‘real numbers”
we obtain | ’ ,

Lemma 3. Xp v {(I,), (1), (1)} implies, for all x, (1) v = x: I, and (2) if Rx then
r=xondT = . ‘ :

Proof. (1) By Lemma 1 and (I,), z = 2: & exist where z = x and Z = 7; by (13),
z = . (2) By (I,), Rz holds so, assuming R, the trichotomy law yields exactly one
of x = x, » <&, or x < x Itisimpossible for & < @ to hold since it implies (by (I )
r<z oontrary to 2g. Also, v < x is 1mposs1ble since it implies (by (1,)) that & <z
which violates Lemma 1. (2). Thus, & = . Similarly » = Z.

The last four axioms (I,)—(I,) describe the appropriate relations.
(1) Vo, 2fr +y =z +y=2&54+ 7= 2],

Is) Va, 7/, Aw -y =z z = min{ay, 27, Ty, T} & Z = max{zy, 17, Ty, E7}],
(I¢) Vo, yl —x = gy« —x =& —~T = ¥y,

(I4) Vo, yle <y« T < yl.

This completes the axioms in X;. Models of Xg v 2 will be called interval real num-
ber systems. ¥
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Theorem 1. The axioms for interval real number systems chardcterize the first-order
theory of J(R). ’

Proof. Clearly .#(R) satisties X v X;. For an arbitrary model . of Xx U X, it
suffices to show that .# and #(R) have isomorphic ultrapowers (cf. [2, Chapter 6]).
Since .# satisfies Xx, R = . Hence, there exist ultrafilters I’ and G on sets [

e.e.

and J respectively such that

P (RO = |
for some isomorphism ¢. Observe that R“) = (RUD) and RY® = %{ so the
“real numbers” in .#% and #(R)L are isomorphic by ¢. Extend ¢ to ¢*: AL — F(R)L
by ,

pHx) = @) : ()
for all # € M. Lemma 3 shows that @t extends ¢. Suppose @t(x) = ¢*(y). Then
P(z) = @) = @"(y) = @(y) and similarly @(Z) = @(7). Since (p is one-one, these
equations and (I,) imply @ = y; so ¢t is one-one. Now, given w € I(R) there exist
w, W € RE such that w < . Let a = (p“(gu)’ and b = ¢~ (). Then a = b by the iso-
morphism property of ¢. Let z = a:b. Then an easy computation shows ¢*(z) = w;
80 @F is onto. Finally, ¢ preserves +, —, -, and < for “real numbers” so axioms
(I,)— (I;) show that @* is an isomorphism of .#% onto #(R)}.

2. Deeidability

It follows from Theorem 1 that the theory of #(R) (that is, the theory of interval
real number systems) is decidable since it is complete and axiomatizable. Another
proof of this result is outlined in this section. The ideas is to translate a statement
about interval real number systems into one about # (or real closed fields) which
may be analyzed using Tarski’s elimination of quantifier method. Some consequences
of this process are mentioned at the end of the section.

To translate the theory of #(R) into the theory of # first introduce two new (real)
variables v and ¢ with each variable v (that ranges over I(R)). We must make sure
all the variables v, 3, w and % are distinct whenever v and w are distinct variables.
A formula @' in the languages of Z is inductively associated with each formula @ in

the interval language in the following way. For atomic formulas,

(w = v)! is (u=v&u=7),
{uw < v)! is (w<v),
(w = 0! s W=0&a=0), (u=1) is w=1&a=1),
(u = —o)! is (—v=u8& -7 = u),
w

w=v+w! is u=v+wki=>1+ ),

(v = v-w) W
. By induection,

(M) is 7",

(v ) is (@'vyl),  (p&y)t i (T &yh),

(Fop)!- is 335 < 5 & ¢h).
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Now, by an easy induction argument we obtain

‘Lemma 4. For any formula ¢ in the language c¢f F(R), any model .4 of 2r vy,
and any sequence Xo, Xy, ... in M with X, = ,: T, with z;, %, € R" (i < w),

(1) ¢' is a formula in the language of # with the same quantifier complexity as @ and
hawving 2n free variables whenever ¢ has n free variables,

(2) (Xo, Xy, ...> satisfies ¢ in M iff (xo,To, %y, Ty, ...y satisfies ! in RO,
From Lemma 4 it immediately follows that, for a sentence ®,

(3) @ is true in F(R) iff @' is true in A.

(That is, ¢ is provable from Zp w2} iff ¢! is true in all real closed fields.) The follow-

ing theorem is an immediate consequence of (3) and TARSKI’s elimination of quantlfler
argument for real closed fields [10] (see also [3]).

Theorem 2. The theory of interval real number systems is decidable.

The decision process above is fairly tedious to carry out. As an example of a very
easy special case we apply the process to the interval formula 3X(4 + X = B). Trans-
lating into # we see the formula.is equivalent to b — g <b — . This is essentially
RarscuEx’s result [7] that an interval equation 4 + X = B hzw a-solution iff the
length of 4 is at most the length of B.

The elimination of quantifier procedure for real closed fields and Lemma 4 yield
Theorem 3. The theory of interval real number systems is model-complete.

As an application of model-completeness a Nullstellensatz for interval real number
systems can be deduced (see MACINTYRE [4]).

The Tarski elimination procedure (which is alse known as the TARSKI-SEIDENBERG
result in algebraic geometry) is a fundamental result in the study of semi-algebraic
sets over real closed fields (see [1]). In this context it says that a projection of a semi-
algebraic set is again semi-algebraic. The translation (Lemma 4), together with the
TARSKI-SEIDENBERG result, should enable a suitable theory of semi- algcbram sets over
interval real systems to be developed.

3. Partial Real Closed Fields

As a starting point for the axiomatic characterization of #(R) given in Theorem 1
we used a set Ly of axioms obtained by relativizing axioms for real closed fields to
the predicate Ry. While this has a certain logical efficiency it does not produce an
aesthetically pleasing set of axioms. The results of this section represent an attempt
to replace as many of the axioms in 2y as possible by natural statements that avoid
the R relativization. To organize the new statements it also seems desirable to isolate
the contributions made by the order relation as done in ordinary algebra. For this
reason we formulate the concepts of a “partial field”, a “partial ordered field”’, and
finally a ““partial real closed field”’. Proceeding in this way it is unreasonable to expect
that the underlying partial order & can be avoided; in fact, it has been used frequently
to express properties of the interval reals (see [5], [6]).

How shall we regard structures that are equipped with the “is approximate to”

orderirig =% The answer is given in Scorr [8]. They should be viewed as systems of
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“partial elements”, like data types [8], or domains [9], where the elements maximal
with respect to = are regarded as “ideal” elements given with “perfect informa-
tion”. Thus, the goal is to identify (axiomatize) concepts within the ““partial algebra”
framework which reduced to apropriate ring-theoretic concepts for the “ideal”
elements. o

A partial commutative ring (with unsty) is a system .

,? = <S> ;J +, =57 0’ ]->

that satisfies the axioms: 1

1. L= is a partial ordering and +, -, — are monotone with respect to &.

2a. @+y)+z=a+H+2),

2b. x4+ y=y+wx,

2e¢. 04 z=ux,

2d. -+ (—2)=0,

2e. (x-y)z=2(y-2),

2f. xry=1y9y-u,

2. wryto-z=Ex-(y+2),

2h. x-0=0,
2. 14 (=1)=0,
2j. l-2=0,

2k, (=1) -z = —u.

A partial commutative ring (with unity) is a partial field if
3. 2+ 0->JyRe=Ez&z-y = 1)
The following are easy consequences of the axioms above.
Lemma 5. The following hold in every partial field & :

M €= — (=),

(2) e+y=0-y=—u,
(3) Re&ar=y—->ux=y,
(4 0= —0, ie, RO,

)

) x+y=0—->Rr&Ry,
6)  Re— R(—),

) x-y=1— Re& Ry,

) 2+ 0& Re - y(Ry &z y = 1),
9) Rr—oz-(y+2)=2y+ 2z,
(10) Rz & Ry — R(z + v),

(11) Ry & Ry — R(zx - y),

(12) Rz holds iff x is maximal with respect fo =.
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Proof. (1) Immediate from 2k.

(2) The assumption z 4+ y = 0 implies —2 = —2 + (¢ + y) = (—x + 2) + y &=
=0+ y = y. Similarly, —y = 2 which. ylelds Yy &= —x since — is monotone w1th
respect to &=. Then y. = —x follows from axiom 1.

(3) Suppose & + (—x) = 0 and « =y. Then —x = —y by monoticity so
U=+ (-)a+ (- =y+ (-9 =0
by 1 and 2d. By 1 and 2b, —y + x = 0 so (1) and (2) vield x = —(—y) = ¥.
(4) and (5) are clear from (2) and (6) follows from (1) and 2b.
(7) Suppose @ -y = 1. Then 2e, 2f and 2k yield —1 ="—(x “y) = ax+ (—vy). Thus,
O=l4+(-D=aw-yfa(-y=z (y+ (=y).
by 2i and 2g. Therefore,
0=y 0=y 2+ (=) =y + (-y)
tollows from 2h and 1. This yields Ry. Similarly, Re.
(8) Immediate from axiom 3, (3) and (7).

(9) Because of 2h we may assume w.l.e.g. that & + 0 and Ra. By (8) there eXlst %
with » - @ = 1. Now by 2g

1&-m-y+u-x-z§u~(m-y+:U-z):

80 Y 2 u-(x -y + v-2z). Since = is monotone,
zoytz=arulytr)=x-y+a-z

from which » - (y + 2) = 2 -y + 2 - 2 follows using 2g and 1. -

(10) Since Rz and Ry, 0 =& + y + (—2) + (—9) = (= + Y+ (—(@ + ) using
2b, 2g and 2k. By (3), 2 + y + (—(x + y)) = 0.

(1) Using (9), 2y + (=@ y) =a-y+a-(=y)=w-(y+ (~y)=2-0=0.
(12) (‘3) shows that Rx implies  is maximal. For the converse, w.l.o. g. we assume
@ # 0. Applying axiom 3 and (7), maximality yields Ru.

The following notation is useful when orderings are discussed. Define
v2y iff o Eudu<ydy=v&a < o).

A system & = (8, =, +, —, -, 0,1, <> is8 a partial ordered field if, in addition to
the partial field axioms, & satisfies

da. z<y&arEd &Y=y - <y,

4b. rx<y&u<v-ou<yvae <o,

4e. & €,

4d.. s<yvy<azveyvymaveZyvy =,
4e. 0 <1,

4f. y<zoaty<atzvae+yZa+ oz,

4g. y<z&O0<ar-oa y<uz-zvae-yZz-z.
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Lemma 6. The following hold in every partial ordered field:

(N r<y&y<v->z <o,

(2) (RevRy)&rxZy—>a <y,

(3) Ry o <yvy<avykEez,

4) Re&GRy&SRz&Ey<z—oa+y<z+ 2,

(5) R & Ry&R:&y <2&0<ax>x-y<ua-z

The proof is left as an exercise.
- The following theorem is an easy consequence of Lemmas 5 and 6.

Theorem 4. (1) RY) is a field whenever & is a partial field. (2) R is a ordered
field whenever S is a partial ordered field.

Finally a partial ordered field . is called a partial real closed field it R satisfies
one of the various infinite axiom schemas that makes R®) a real closed field. For
example, we can require the axioms, one for each degree n, that assert: if f(z) is a
polynomial of degree n with coefficients in R”, »,, 2, e R, 2, < x, and f(x,) <
< 0 < f(x,), there exist y in RY, ¥, <y < x, with f() = 0 (see [3]). It is not clear
to the author how to extend the property above to a partial ordered field axiom not
involving Rz.

The set of axioms given above for a partial real closed field can replace the axioms Sy
used to define an interval real field in section 1. Since the language for partial fields
includes the symbol = the followmg axiom needs to be added to 2.

(Ig) vy iff ;:3_/&2:‘

The new set of axioms completely axiomatizes .#(R) in the éxpandcd language.
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