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THE CAYLEY REPRESENTATION OF POLYGROUPS

Stephen D. C«:mer‘1

It is well known that every ordinary group can be represented in a
concrete way as a group of permutations. In this paper we consider
polygroups, special multivalued group-like systems, and investigate a
multivalued analogue of the classical group result; namely, representation by
polygroups of generalized permutations. We call a polygroup Cayley if it
satisfies a natuwral multivalued version of the.Cayley representation result.
Many natural polygroups are Cayley althoughk’ther‘e exist non-Cayley systenms.
The main result is a characterization of Cayley polygroups in terms of the

existence of graph colorings.

1. Generalized permutations and Cayley polygroups
For a set ¥, the set of all non-empty subsets of X is denoted by SQ(X).
& polygroup § is a completely regular, reversible-in-itself wmultigroup in the
sense of Dresher and Ore [4]. More precisely, § is a system (G, -,“l,e)
vhere e € G, _l:G - G, ':Gz - SQ(G) and the following axioms hold for all
K,y,z € G
(1) (xy)z =% (y=)
(i1) H'@ = X = @'X
(iii) X € yrz implies vy € x-z.‘l and = € y—l-x.
Commutative polygroups are the same as the canonical hypergroupes studied by

Mittas [6] and this notion has been shown to be equivalent to the notlon of a
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Jjoin space with identity in Corsini [3].

A generalized perwutation on a set X is a function f£:¥ - SO(X) such

that H = LJ (f(x) : x € ¥ }. The collection of all generalized permutations
on X is denoted by GPrm(H). A generalized permutation on a finite set X
corresponds to a digraph with vertex set X for which the indegree and
outdegree of each vertex is at least 1.

Various results on permutations extend to generalized permutations via

graph theory. For example, call f € GPrm{{} a generalized cycle if, for

every X,y € X, there is a sequence ¥ = X = y such that

gt Xy ceea¥y

® € f(xJ) or x., € £(x for all j < k. It can be assummed without

i+ § &)
loss of generality that all the xi’s are distinct. The following result is
essentially the graph-theoretic result that every digraph has a unigque

decomposition into weakly connected components.

1. PROPOSITION. Every generalized permutation on a finite sel can be written
wiiquely (up to the order of factors) as a union of disjoint generalized

cycles.

In order to form a polygrowp of generalized permutations we must treat
the composition of these functions. For f,g € GPrm(X} define
fg : ¥ 3 SO(X) by
(fg)(x) = g(£{x) = Vgly) : v € £(x) }.

A set F ¢ GPrm{X) is closed under composition if for every f,g € F there

exist K{f,g) ¢ F such that for every x € X
{gg}(x) = U {h{x) : h € K(f,g) }.

In this case the product frg of f,g € F is f#g = K{f,g). The inverse of

i

f € GPrm(X) is defined by ' (x) ={y €8 : x € £f(y) }. It is clear that




[4 i is again a generalized permutation.
A collection F ¢ GPrm{X) 1is called reqular if for every x,y € X,
y € f{x) for some £ €F.
For a set F ¢ GPrm{K) that is closed under conpositibn, closed under

the inverse operation, and contains IX = {{x,u) + ®x € X}, it can be proved

-1

that the system F = (F, %, ,Ix) is a polygroup. We call F a functional
nolygroup. If F is regular, we say that F is a regular functional
polygroup.

For a polygroup ¢ and F ¢ GPrm{X), a function o : G~ F is faithful
if, for all a,b € G, and x € X, o(a){x)No(b)(x) = @ wvhenever a # b. A
polygroup ¢ 1is Cayley if there is a faithful isomorphism of § onto a
regular functional polygroup.

Does the analogue of Cayley's theorem hold? Alwost!

2. THEOREM. Every polygroup is isomorphic to a regular functional polygroup.
(In general, the isomorphism is not faithful,}

Proof. Given a polygroup § = (G,',”l,e), define, for each a € G,

£ € GPrwm(G) by fa(x) = x-a {for all x € G). It is routine to check that

F = (fa 1 a €6} is closed under composition with

. -1 N
K(fa,fb) = {fc 1 c € ab}, £ = fa_l, and I, = f,. Moreover, it is clear

that F is regular: namely, given a,b € G, b € fx(a) for every solution x
to b € ax. Thus, F = (F,*,“l,IG) is a regular functional polygroup. The
wap 0:G = F given by o(a) = fa preserves the operations and is one-one, so

G 2 F. Examples given below will show that, in general, ¢ is not faithful.

u]
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3. REMARKS. (1). Not all polygroups are Cayley. For example the 4 elerment
system A with multiplication table below is not Cayley. See Proposition 6

in section 2.

e 1 2 3
@ @ 1 2 3
1 1 13 @123 12
2 2 @123 23 12
3 3 12 12 @3

{2). By Theorem 5 in section 2 and the results in section 3 of [1] the
problem of deciding whether or not a polygroup is Cayley is equivalent to
deciding whether an integ}al relation algebra is representable. Using this
connection we can restate a result of Lyndon about projective geowetry. In
[?] Prencwitz associated a join space with identity (a commutative polygroup)
?G to every projective geometry G. In the context of relation algebras
Lyndon proved in [S5] that a projective geometry G is enbeddable as a
hyperplane in a geometry of one higher dimension if and only if ?G is
Cayley. Conseguently, for each n such that there is no projective plane
with n points on a line, there is an associated non-Cayley polygroup. See [2]

for details.

2. fn alternate characterization of Cayley polygroups.

In this section we characterize to notion of a Cayley polygroup in terms
of the existenﬁe of colorings of a conmplete graph.

Iet ¢ be a set with |¢] > 2 and 0 € ¢. (Think of ¢ as a set of

colors and @ as the neutral color.) Also, suppose ¢:C =+ € such that




31

=1, and (@) = ©. A color scheme (of type C } is a system
¥ = (V,{Ca :a€C} such that Ca C 02 for all a € ¢ and the following
properties hold: { ¥ denotes relation converse and ! denotes composition.)
{cs1) {Ca ta€C )} partitions 02 and CQ = IV’
(€52}  (va€c){ Ca(a) = C; )y
(c83)  (va€e)(wxev) (yeV)( (wm,y) €C_ ),
(Cs4)  ({va,b,c€C){ CN(C_[C )} # @ implies C_ CC [C ),
ie., for a,b,c € ¢ and w,y € V {z€V : xC = & =y Y0
is independent of (x,y) € Cc;'

The following lewa is proved in a straightforward way.

4. LEM. For a color scheme V = (U,{Ca i a €C ) the system

M, = <C,y¢,@ where a'b = {cec: C. ¢ Calcb } is a polygroup.

The system m\, defined in the lemm is called the color algebra of the
color scheme VY. We say that a polygroup § is chromatic if § 2 ﬂ\f for some

color scheme ¥. The next theorem is the main characterization.

5. THEOREM. A& pelygroup is Cayley if amd anly if it is chromatic.

Proof. (9) Suppose o is a faithful isonorphism of ¢ ooto a regular
functional polygroup F ¢ GPrn(X). We build a color scheme on X as follows:
let ¢ =¢, @=e, ola)= a—l, and, for a € ¢, Ca = {{x,y}) € X2 : oy €
olaj{x) }. Then V = (X’{Ca: a€C }> is a color scheme and § = m\f

(&) It is enough to show that ﬂ\f is Cayley vhere V = (V,{Ca : a€C » is a
color scheme. For a € ¢ define fa(x) ={y €V (u,y) € C, } for all =
€ V. Then, by (C53) fa € GPrm{V}, by {CS1} EQ = CQ) = IU’ by (C54)

- ~1
£.fp = {PD : © £ a'b (in mv_)}, angd by (C32) (f‘a) = fa—&' roreover, hy
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{C51) F = {fa t a €C} is regular; thus, F = (F,*,—l,lu) is a regular
functional polygroup,  The isoworphism o:a 2 fa of Il\, onto F is faithful

by (CS1) because z € fa(x) n fb(x) if and only if (x,z) € cnec o

b
The characterization in Theorem 3 provides a graphical approach for
determining if a polygroup is Cayley. We give two results below to illustrate

its use.

6. PROPOSITION. The polygroup A in Remark 3 is not Cayley.

Proof. Suppose A is the color algebra of a scheme ¥V = (V’CQ’Cl'CQ’CG)
where ¢ interchanges 1§ and 2 and fixes 3. The multiplication table for
A tells vhich colored triangles in V wust be present and which are forbidden.
By (€53} there exist (H,y)ECB. Since 3€1:.1 and 3€2.2, so there exist u
and v with (H,u)ECl, (u,y)ECl, (x,v)Ecz, and (v,y)E—CZ. Nowr,
(u,u)E(Czlcz)ﬂ(Cllcl) = C, from the multiplication table [remember (1} = 2}.
Since 1€1:1 there exist w with (y,w)EC1 and (w,v)GCl. From the
multiplication table for & we can determine the colors on the edges (w,x)
and {wu): (w,x)e(c2|c3)n(c1|cl) =C, and {w,u)€(C,lC )n(C, fc ) = C,.
Because the triangle {w,x,u} has (w,x}€C

{x,u}eC, and (wu)€C_ it

1? 1 2

follows that the 2€1.1 holds in A which is a contradiection. 0O

fis a second illustration of the use of Theorem 5 we show that many
natural polygroups are Cayley. For a group ¢, an egquivalence relation 8§ on G
is called a (full) conjugation if (i)} &{ny) € (6x){9y} and
(ii} (5‘:«)_1 = 9()(—1) for all x,y €G. For a conjugation & on a group § a
guotient polygroup §//8 can be defined on the 8-blocks in a natural way.
Exanples of full conjugations can be found in [1]. From Theorem 2.3 of [i] we

immediately obtain




7. PROPOSITION.

Cayley.

3. Problews.

(1). Is every Cayley polygroup isomorphic to a quotient ¢//8 where &

full conjugation on some group §?

{2). fAre either of the two polygroups below Cayley?

o i 2 3
] 2 1 2 3
1 1 12 @123 13
2 2 0123 1223
3 3 13 23 0123

W =S

Far every group G and full conjugation 8 an G,

c//8

¢ 1 2 3
@ 1 2 3
1 13 @123 123
2 9123 23 123
3 123 123 012

is

is

a
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