Convegno su: IPERGRUPPI, ALTRE STRUTTURE MULTIVOCHE E LORO APPLICAZIONI Editor: P. CORSINI UDINE, 15 - 18 Ottobre 1985

THE CAYLEY REPRESENTATION OF POLYGROUPS

Stephen D. Comer¹

It is well known that every ordinary group can be represented in a concrete way as a group of permutations. In this paper we consider polygroups, special multivalued group-like systems, and investigate a multivalued analogue of the classical group result; namely, representation by polygroups of generalized permutations. We call a polygroup Cayley if it satisfies a natural multivalued version of the Cayley representation result. Many natural polygroups are Cayley although there exist non-Cayley systems. The main result is a characterization of Cayley polygroups in terms of the existence of graph colorings.

1. Generalized permutations and Cayley polygroups

For a set X, the set of all non-empty subsets of X is denoted by $S_Q(X)$. A polygroup G is a completely regular, reversible-in-itself multigroup in the sense of Dresher and Ore [4]. More precisely, G is a system $(G,\cdot,^{-1},e)$ where $e \in G$, $^{-1}:G \to G$, $\cdot:G^2 \to S_Q(G)$ and the following axioms hold for all $x,y,z \in G$:

- (i) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- (ii) $x \cdot e = x = e \cdot x$
- (iii) $x \in y \cdot z$ implies $y \in x \cdot z^{-1}$ and $z \in y^{-1} \cdot x$.

Commutative polygroups are the same as the canonical hypergroupes studied by MIttas [6] and this notion has been shown to be equivalent to the notion of a

Research supported in part by a grant from The Citadel Development Foundation.

join space with identity in Corsini [3].

A generalized permutation on a set X is a function $f:X \to S_Q(X)$ such that $X = \bigcup \{f(x) : x \in X\}$. The collection of all generalized permutations on X is denoted by GPrm(X). A generalized permutation on a finite set X corresponds to a digraph with vertex set X for which the indegree and outdegree of each vertex is at least 1.

Various results on permutations extend to generalized permutations via graph theory. For example, call $f \in GPrm(X)$ a generalized cycle if, for every $\kappa, y \in X$, there is a sequence $\kappa = \kappa_0, \kappa_1, \ldots, \kappa_k = y$ such that $\kappa_{j+1} \in f(\kappa_j)$ or $\kappa_j \in f(\kappa_{j+1})$ for all j < k. It can be assummed without loss of generality that all the κ_i 's are distinct. The following result is essentially the graph-theoretic result that every digraph has a unique decomposition into weakly connected components.

 PROPOSITION. Every generalized permutation on a finite set can be written uniquely (up to the order of factors) as a union of disjoint generalized cycles.

In order to form a polygroup of generalized permutations we must treat the composition of these functions. For f,g \in GPrm(X) define $fg: X \to S_{\emptyset}(X) \quad \text{by}$

$$(fg)(x) = g(f(x) = U(g(y) : y \in f(x)).$$

A set $F \subseteq GPrm(X)$ is <u>closed under composition</u> if for every $f,g \in F$ there exist $K(f,g) \subseteq F$ such that for every $x \in X$

$$(fg)(x) = \bigcup \{h(x) : h \in K(f,g)\}.$$

In this case the <u>product</u> f*g of $f,g \in F$ is f*g = K(f,g). The inverse of $f \in GPrm(X)$ is defined by $f^{-1}(x) = \{y \in X : x \in f(y)\}$. It is clear that

 ${f f}^{-1}$ is again a generalized permutation.

A collection $F \subseteq GPrm(X)$ is called <u>regular</u> if for every $x,y \in X$, $y \in f(x)$ for some $f \in F$.

For a set $F \subseteq GPrm(X)$ that is closed under composition, closed under the inverse operation, and contains $I_X = \{(x,x) : x \in X\}$, it can be proved that the system $\mathcal{F} = \langle F, \times, ^{-1}, I_X \rangle$ is a polygroup. We call \mathcal{F} a <u>functional polygroup</u>. If F is regular, we say that \mathcal{F} is a <u>regular functional</u> polygroup.

For a polygroup G and $F \subseteq GPrm(X)$, a function $\sigma : G \to F$ is <u>faithful</u> if, for all $a,b \in G$, and $x \in X$, $\sigma(a)(x)\cap \sigma(b)(x) = \emptyset$ whenever $a \neq b$. A polygroup G is <u>Cayley</u> if there is a faithful isomorphism of G onto a regular functional polygroup.

Does the analogue of Cayley's theorem hold? Almost!

THEOREM. Every polygroup is isomorphic to a regular functional polygroup.
(In general, the isomorphism is not faithful.)

Proof. Given a polygroup $\mathcal{G} = \langle G, \cdot, ^{-1}, e \rangle$, define, for each $a \in G$, $f_a \in GPrm(G)$ by $f_a(x) = x \cdot a$ (for all $x \in G$). It is routine to check that $F = \{f_a : a \in G\}$ is closed under composition with $\mathbb{K}(\{f_a, f_b\}) = \{f_c : c \in a \cdot b\}, \quad f_a^{-1} = f_{a^{-1}}, \quad \text{and} \quad I_G = f_e.$ Moreover, it is clear that F is regular: namely, given $a, b \in G$, $b \in f_x(a)$ for every solution $x \in G$ and $x \in G$ is a regular functional polygroup. The map $\sigma: G \to F$ given by $\sigma(a) = f_a$ preserves the operations and is one-one, so $G \cong F$. Examples given below will show that, in general, σ is not faithful.

3. <u>REMARKS</u>. (1). Not all polygroups are Cayley. For example the 4 element system A with multiplication table below is not Cayley. See Proposition 6 in section 2.

	Ø	1	2	3
0	Ø	1	2	3
1	1	13	Ø123	12
2	2	Ø123	23	12
3	3	12	12	Ø 3

(2). By Theorem 5 in section 2 and the results in section 3 of [1] the problem of deciding whether or not a polygroup is Cayley is equivalent to deciding whether an integral relation algebra is representable. Using this connection we can restate a result of Lyndon about projective geometry. In [7] Prenowitz associated a join space with identity (a commutative polygroup) \mathcal{P}_G to every projective geometry G. In the context of relation algebras Lyndon proved in [5] that a projective geometry G is embeddable as a hyperplane in a geometry of one higher dimension if and only if \mathcal{P}_G is Cayley. Consequently, for each in such that there is no projective plane with n points on a line, there is an associated non-Cayley polygroup. See [2] for details.

2. An alternate characterization of Cayley polygroups.

In this section we characterize to notion of a Cayley polygroup in terms of the existence of colorings of a complete graph.

Let $\mathcal C$ be a set with $|\mathcal C| \geq 2$ and $\emptyset \in \mathcal C$. (Think of $\mathcal C$ as a set of colors and \emptyset as the neutral color.) Also, suppose $\mathcal C:\mathcal C \to \mathcal C$ such that

 $c^2 = I_C$ and c(0) = 0. A <u>color scheme</u> (of type C) is a system $V = \langle V, \{C_a : a \in C\} \rangle$ such that $C_a \subseteq V^2$ for all $a \in C$ and the following properties hold: (V denotes relation converse and V denotes composition.)

- (CS1) $\{C_a : a \in C\}$ partitions V^2 and $C_0 = I_V$,
- (CS2) $(\forall a \in C)(C_{\iota(a)} = C_a^{\vee}),$
- (CS3) $\{\forall a \in C\} (\forall x \in V) (\exists y \in V) (\{x,y\} \in C_a\}$,
- (CS4) $(\forall a,b,c \in C)$ ($C_c \cap (C_a \mid C_b) \neq \emptyset$ implies $C_c \subseteq C_a \mid C_b$), i.e., for $a,b,c \in C$ and $x,y \in V$ $\{z \in V : xC_az \& zC_by\} \neq \emptyset$ is independent of $(x,y) \in C_c$.

The following lemma is proved in a straightforward way.

4. LETMA. For a color scheme $V = \langle V, \{C_a : a \in C_b \rangle \rangle$ the system $M_V = \langle C, \cdot, c, \emptyset \rangle \text{ where } a \cdot b = \{c \in C : C_c \subseteq C_a | C_b \} \text{ is a polygroup.}$

The system \mathcal{M}_V defined in the lemma is called the <u>color algebra</u> of the color scheme V. We say that a polygroup \mathcal{G} is <u>chromatic</u> if $\mathcal{G} \cong \mathcal{M}_V$ for some color scheme V. The next theorem is the main characterization.

5. THEOREM. A polygroup is Cayley if and only if it is chromatic.

Proof. (\Rightarrow) Suppose σ is a faithful isomorphism of $\mathcal G$ onto a regular functional polygroup $\mathcal F\subseteq \mathsf{GPrm}(\mathcal H)$. We build a color scheme on $\mathcal H$ as follows: let $\mathcal C=\mathcal G$, $\emptyset=e$, $c(a)=a^{-1}$, and, for $a\in\mathcal C$, $C_a=\{(x,y)\in\mathcal H^2:y\in\mathcal G(a)(x)\}$. Then $\mathcal V=\langle\mathcal H,\{C_a:a\in\mathcal C\}\rangle$ is a color scheme and $\mathcal G=\mathcal M_{\mathcal V}$. (\Leftarrow) It is enough to show that $\mathcal M_{\mathcal V}$ is Cayley where $\mathcal V=\langle\mathcal V,\{C_a:a\in\mathcal C\}\rangle$ is a color scheme. For $a\in\mathcal C$ define $f_a(x)=\{y\in\mathcal V:(x,y)\in\mathcal C_a\}$ for all $x\in\mathcal V$. Then, by (CS3) $f_a\in \mathsf{GPrm}(\mathcal V)$, by (CS1) $f_0=\mathcal C_0=I_{\mathcal V}$, by (CS4) $f_af_b=\{f_0:c\in a\cdot b\ (in\ \mathcal M_{\mathcal V})\}$, and by (CS2) $\{f_a\}^{-1}=f_{a-1}$. Moreover, by

(CS1) $F = \{f_a : a \in C\}$ is regular; thus, $F = \langle F, *, ^{-1}, I_V \rangle$ is a regular functional polygroup. The isomorphism $\sigma: a \to f_a$ of f(V) onto F is faithful by (CS1) because $z \in f_a(x) \cap f_b(x)$ if and only if $\{x, z\} \in C_a \cap C_b$.

The characterization in Theorem 5 provides a graphical approach for determining if a polygroup is Cayley. We give two results below to illustrate its use.

6. PROPOSITION. The polygroup A in Remark 3 is not Cayley.

Proof. Suppose A is the color algebra of a scheme $V=(V,C_0,C_1,C_2,C_3)$ where c interchanges 1 and 2 and fixes 3. The multiplication table for A tells which colored triangles in V must be present and which are forbidden. By (CS3) there exist $(x,y) \in C_3$. Since $3 \in I \cap I$ and $3 \in I \cap I$ and $4 \in I \cap I$ and $4 \in I \cap I$ with $(x,u) \in C_1$, $(x,y) \in C_2$, and $(x,y) \in C_2$. Now, $(x,v) \in (C_2 \mid C_2) \cap (C_1 \mid C_1) = C_3$ from the multiplication table [remember c(1) = 2]. Since $1 \in I \cap I$ there exist w with $(x,y) \in C_1$ and $(x,y) \in C_1$. From the multiplication table for A we can determine the colors on the edges (x,x) and $(x,u) \in (C_2 \mid C_3) \cap (C_1 \mid C_1) = C_1$ and $(x,u) \in (C_2 \mid C_2) \cap (C_1 \mid C_3) = C_2$. Because the triangle (x,x) has $(x,x) \in C_1$, $(x,u) \in C_1$ and $(x,u) \in C_2$ it follows that the $2 \in I \cap I$ holds in A which is a contradiction. I

As a second illustration of the use of Theorem 5 we show that many natural polygroups are Cayley. For a group G, an equivalence relation θ on G is called a (full) conjugation if (i) $\theta(xy) \subseteq (\theta x)(\theta y)$ and (ii) $(\theta x)^{-1} = \theta(x^{-1})$ for all $x,y \in G$. For a conjugation θ on a group G a quotient polygroup G/θ can be defined on the θ -blocks in a natural way. Examples of full conjugations can be found in [i]. From Theorem 2.3 of [i] we immediately obtain

7. PROPOSITION. For every group G and full conjugation θ on G, G// θ is Cayley.

3. Problems.

- (1). Is every Cayley polygroup isomorphic to a quotient $G//\theta$ where θ is a full conjugation on some group G?
- (2). Are either of the two polygroups below Cayley?

1	Ø	1	2	3
0	Ø	1	2	3
i	1	12	Ø123	13
2	2	Ø123	12	23
3	3	13	23	Ø123

	Ø	1	2	3	
Ø	Ø	1	2	3	
1	i	13	Ø123	123	
2	2	0123	23	123	
3	3	123	123	012	

REFERENCES

- S. D. Comer, Combinatorial aspects of relations. Algebra Universalis 18(1984), 77-94.
- S.D. Comer, Combinatorial types. In, Algebra, Combinatorics and Logic in Computer Science, Colloquia Math. Soc. J. Bolyai, North-Holland Pub. Co., to appear.
- P. Corsini, Recenti risultati in theoria degli ipergruppi. Bolletino Un. Mat. Ital. 2-A(1983), 133-138.
- M. Dresher and O. Ore, Theory of multigroups. Amer.J. Math. 60(1938), 705-733.
- R.C. Lyndon, Relation algebras and projective geometries. Michigan Math. J. 8(1961), 21-28.
- J. Mittas, Hypergroupes canoniques. Math. Balkanica 2(1972), 165-179.
- W. Prenowitz, Projective geometries as multigroups. Amer. J. Math. 65(1943), 235-256.

The Citadel, Charleston SC 29409, USA Iowa State University, Ames IA 50011, USA

1