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ABSTRACT: A finite semilattice X is weakly regular if it admits a length function E such that
. forallrst =m

Tkt o

ax,y,zeX [xy(X /\ XZ € X A yzeX ] 1mphes VX yeX [xyeX - azeX [xzeX A yzeX ]l

where X =. {xeX:((x) = i} for all i and m is the maximum value of {. Every regular
: semxlattlce is.weakly regular. A weakly regular semilattice determines a color scheme us-
ing a construction of Delsarte. Two weakly regular semilattices are equivalent if the
polygroups (hypergroups) associated with their color schemes are isomorphic. A ge-
ometrical characterization of weakly regular trees is given. It is shown that every weakly

regular tree is equivalent to a regular tree and the polygroups of these systems are com-
pletely determmed

In [3] Delsarte introduced the concept of a regular semilattice and showed how
to construct an association scheme from such a semilattice. Association schemes are
color schemes in the sense of [2]. We introduce the notion of a weakly regular semi-
lattice and show that Delsarte’s construction produces a color scheme NUX) from
a finite semilattice X with a length function if and only if the semilattice is weakly
regular. Unfortunately, it is not easy to tell whether a semilattice is weakly regular.
It is desirable to characterize weak regularity by conditions of a geometrical nature
similar to the conditions used by Delsarte for regularity. In section 2 such conditions
are given when the semilattice is a tree. Two weakly regular semilattices X and Y
are color equivalent if the color algebras associated with 2(X) and 2(Y) are iso-
morphic. We show that every weakly regular tree is color equivalent to a regular
tree and completely describe the color algebras of regular trees.

" For unexplained notation and terminology the reader should consult [2] and

[31.

1 Research supported in part by grants from The Citadel Development Foundation and the Con-
siglio Nazionale delle Ricerche.
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1. Weakly Regular Semilattices

A finite poset <X, =< > is a (meet) semilattice if every two points x,yeX has

- a greatest lower bound denoted by xy. Let 0 denote the least element of X. A length

Junction on a finite semilattice X is a function £:X—w such that £0) = 0 and for
every X,yeX with x <y there exist ueX x < u =< yand f(u) = £(x)+ 1. A semilattice
adm:its at most one length function.
" The construction below of a relational system 2(X) from a finite semilattice
. that admits a length function was introduced in [3] as a way to construct association
schemes. ~

Let m denote the max1mum value of E(x) and defme flbers Xps-o X, by
X, = [xeX : I(x) = i}.

| Lete, = m > e > ... > e be a list of the distinct values of £(xy) for

- X,yeX,,. For i <n define the relation R, X2 by

R, = () X} 2 0wy) = ¢

-and set 7°(X) = <X_,R,,...,R >.

A binary relational system (V,R.,...R)) is a (symmetric) n-color scheme (cf.,

S R2pif

@) {RO, R} is a partltlon of V,Ri# ) for all i, and R, = I,

(n) for all r,5,t <n, R N(R, IR);f@ implies R R [R,.

.-Association schemes are color schemes but not every color scheme is an associ-
ation scheme. Color schemes arise in the study of representations of relations al-

' pebras. We want to characterize semilattices X for which UX) is a color scheme,

Definition 1. A finite semilattice <X, => that admits a length function is weakly
regular if forallr,s,t < m '

- (1.1) 3x,y,zeX [xyeX, A xzeX, /\ yzeX ] implies vx yeX
[xyeX, — 3zeX [xzeX, A yzeX ]]

Because (1.1) is a restatement of (ii) in the definition of color scheme the fol-
lowmg characterization is obvious.

Theorem 2. 2°(X) is a color scheme iff <X, <> is weakly regular.

To see that Theorem 2 isa wedk form of Theorem 7 of [3] we need to see that
a regular semllattlce is weakly regular.
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" Definition 3 [3]. A semilattice <X, < > that admits a length function is regular if
(1) for yeX,, , zeX, with z=y |{ueX, : z = u < y]| if a constant u(r,s).
" (2) for ueX, ,|{zeX, : z=<uj| is a constant v(r,s). ‘
}(3) for aeX, , yeX,, with ayeX; [[(b,2)eX, XX : b =< zy, a =<z]| is a constant
7(j,r,s).

Proposition 4. A regular semilattice is wedkly regular.

‘Proof Suppose <X,<> is a regular semilattice. Let D,eIR(X
adjacency mamx of the graph <X R >, i.e.,

m?

X,) denote the

oyl ifexy) = e
Dk(x,y) = {0 otherwise

- The proof of Theorem 7 in [3] that <X ,R,,...,R,> is an association scheme
~amounts to showing that the vector space generated by D,,...,D, is a multiplica-
“tive algebra. In particular, it is shown that ‘

for real numbers pk. The hypothesis of condition (1.1) asserts that (D,D)(x,y) =
I and D (x,y) = | for some x,yeX . Since D(x,y) = 1 implies D,(x,y) = 0 for all
k#r, the algebra equation shows that p, > 0. Now suppose X,yeX. with
D.(x,y)=1. Since p;, > 0 and D,(x,y) = 0 for all k # r, (D,D)(x,y)>0. Thus,
there exist zeX 'with xzeX, and zyeX, as desired. o -

2. ‘Wgak‘ly Regular Trees

A tree isa semilattice <X, =< > such that (x] = [y : y <x] is well prdered by
< for all xeX. The goal of this section is to characterize weakly regular trees by con-
ditions 51mnlar to 3(1), 3(2) and 3(3).

We assume throughout that <X, =< > is a tree that admits a length function
(. Fori = m let |

X, = [xeX, : x< y for some yeX_].
Clearly';—)z X, and if x,yeX  then xye—)z forr = f(xy). Also, if be(x]NX,

- where xeXm. then beX For xeX, the outdegree of x is the number 6(x) =
(yeX,., by = K. |
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+.Consider the two conditions
T1.  For r=m, if §(x) = 2 for some xeX then 6(x) = 2 for every ; XeX
- T2. For r=m, if §(x)=3 for some xeX thcn 0(x)=3 for every xeX,.
We consider two alternatives tojl Namely, R
T1’. Forr=m, 6(x) =2 for some xeX, implies 6(x) =2 for all xeX,.
T1”. Forr = m, 6(x) = 1 for some xeX, implies 6(x) = 1 for all xe—)zr.

H

v Lemma 5. Suppose X is a tree that admits a length function.
(1) Condition T1' holds.iff condition. T1" holds.
2 If A sattsfzes T2, then T1’ holds Iff T1 holds.

- Proof (1) (=) Suppose 6x—1 and 6y s 1 for some X 3rX

Since &y =1, it follows that dy=2 which, by T1’, implies that x> 2 con-
’ tladxctmg ox = 1.
(=) Suppose 6x=2 for some XGX and 2% 0y for some VeX Thus, oy =
" which implies, by T1”, that éx = | contradlctmg 6(x)>2
- (2) Tl clearly follows from T1 and d T2 For the converse, suppose 6x =2 for
vosome xeX T1’ implies dy =2 for all yeX If 6y > 2 for some yeX,, then T2 im-
. plies 6x>2 thus, 8y = 2 for all yeX u]

Conditions "Il and T2 mean that é is ‘“‘constant on fibers” for small values.

Theorem 6. A tree <X, <> is weakly regular iff Tl and T2 hold.

Proof (=>) Suppose <X, =< > is weakly regular. To verify T1’, suppose x,yeXq
with 6(x) z2; say x ,x”eXHl X'x" = x, Choose x,x,eX extending x’,x” and ob-
serve that x X, = x eX_. Thus, 1he hypothesis of (1 1) holds where s = t and r =
. 0. Choose yleX with y, = y. Ihen by (1.1) there exist zeX, such that y,7eX

Since (y,] is well ordered (y,] NX, = [y] and so y,z=y. The elemenv iy’ and y” de-
fined by {y'} = (v,JNX_,, and [y”]= (zINX,,, are distinct covers of y so 6(y)= 2.
This shows that T1’ holds. . ‘ :

- To verify T2, suppose, x,yeX, and 6(x) = 3. Hence there exist distinct ele-
ments X,,%,X,eX, such that xx, = xx, = xzx =X ByTl” 6y = fsoy = yyy,
for some y,,y,eX . Applying (1.1) with r = s = t there exist zeX,, with y,zeX, and

©yzeX.. Siree [y} = (y,INX, = (y,]NX_, Y2 = ¥,z =y and therefOI dy = 3. By
Lemma 5, T1 and T2 hold. '
. (=) Assume T1,T2 hold and there exist x,,y,,z, eX,, with x y,eXz,xizlesZS and
yiz,€X,. Syppose x,yeX  with xyeX We consider cases. ? :
' roe=gs=ft=m,
. Then k¢ = y and (1.1) obviously holds with z = x.
r o= wands = t #m.
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‘ " Then x,=vy, and 6(x,z,)=2. Choose ueX with u = x = y. T!’ implies
Lou = 2, Choose z eX . with xz” = u and extcnd z' to zeX . Then xz=yz =
ueX as desired. '
r# mands > r.
Because (z,] is well ordered the unique element in (z,]NX| is x,z,. Similarly
xINX, = (z]NX, = [xy]. Therefore, z;y, = x,y, so t = r in this case. Now
suppose x,yeX with xyeX . Choose beX, b = x. Since £(x;z,) = s, condition T1
~implies there exist zeX | with xz = beX,. Now, yz = yx eX = X as desired.
rosom and r>s.
‘ First, t = s follows because (x,] isiwell ordered, r>s, x,y,eX, and x,z,eX. If
L’(ylz) = t >.s then Xmm”] contains an element < x,z, which contradicts

I Ch(xzy) = 85 thus t = s. Now suppose X,yeX, with xyeX and choose bc-;X with
. ) = X. Since 6(x z) = 2, 8b = 2 so choose zeX, with xz = ch Also, yz- = chs

‘ = X because X'z’ = b where z’ is the unique clemenl in (z]ﬂX
. unique element in (x}ﬂXHl = (y]ﬂxs e

: r=3s# mandt # m(sincet = mis obvious). i
‘ In this case x,,y,,z, are all distinct and {x,y,} = (x,]NX, ={xz} = (yJNX, =
' [y,2,). Therefore t=r and §(x;y,) = 3. Hence d(xy) = 3. Choose z’eX_, distinct
from the elements in (x}]NX_,, U (yINX,,,. Thenz'x = 2’y = xy. Extend z’ to
zeX,, to produce the desired.conclusion. o

)
41 and x’ is the

3. Classification of Weakly Regular Trees.

A weakly regular semilattice X can be classified by a multi-valued algebra that
indicates how the relations of 2°(X) compose. The notion of a color algebra and
its properties can be found in [2].

Definition 7. (1) The color algebra of a symmetric n-color schemie 9 =
<V,Rg,...,R > is the system_7) = <[0,...,n},%,0>> where, for r,s,t¢(0,...,n}, *
is defined by

skt = [r: R & R |RJ.

(2) Two weakly regular semllattlces X and Y are (color) equivalent if _# 7(X)
=AM (Y) ,
" Basically, the color equivalence of X and Y means that the color schemes they
determine generate isomorphic algebras of relations (cf., [2]). By Theorems 8 and
9 the color algebras of weakly regular trees are completely described.
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~The‘(')rem 8. 'Every Weakly regular tree is (color) equivalent to a regular tree.

Proof leen a weakly regular tree <X,=> we construct another tree
<X, <‘>‘ by the followmg procedure ~

Step 1: Delete all nodes in X, - X for all r to form X', : ;
,;;;In the resultmg tree every element in X/, ‘r # m, extends to an element of X!,
€.y X X’ : L

‘;‘vStep 2: Form the quotient tree X” = X’/ = where x~y iff (y covers x and 8x
D:or (x covers y and 8y = 1).

% T1” holds:in X" by Lemma 5, so X"+ is. obtained by 1dent1fymg X, with X/ |
. when some element of X/ has a unique cover. X” satisfies T1 and T2 because
6x = 2and x =~ y implies x = y. Because 8(x)=2 for every xeX”, not in Xy every

element in X” has the form yz for some y,ZGX ”

’ + Step 3: For each x, say in X} with 6x = n > 3 choose distinct x XXy in X7
- which cover x and replace [x) = {yeX” :y = x] with '

U)X U[x,).

Let X be the resulting tree. Clearly X is weakly regular, éx depends only on the
~ fiber that contains x (by T1 and T2) and for every x 6x = 2 or 6x = 3.
Claim 1. X and X are color equivalent.
: It suffices to check that each step of the construction of X does not effect the
~ color algebra associated with X. Clearly Step 1 and Step 2 does not change //Q(X)
. because we only remove elements that never appear as a product of elements fr om
t':X To see that Step 3 does not change the color algebra of 2(X”) note that to
~compute a product in _#<)(x »y we never need more that 3 elements XppXpXy € X
- with x,x,, X%, X,x; € X" and this case occurs only when R, N (R, | R) # w1th
e =r.

Claim 2. <X,<>is a regular tree.
We need to check (1), (2),. and (3) of defmrtlon 3.
) leen yeXm , 7eX with z<y there is exactly one point ueX such that
'z = u < y because (y} is well ordered, ie., u(r,s) = I,
2) For similar reasons v(r,s) = 1.
(3) Given anr,yeX with aye X;; the value of x(j,r,s) depends on the value of
6-on the fibers above a. Choose xeXml then observe that |zeX : z = a]| =
0 (x, )' .*0(x,,,). For each zeX with z= a, yz=ay. There is only one element be)"{s
o such that b= zy ifs <j and no elements if s} j, Hence ’
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m-r

7(,1,8) = 6(x)) ¢ 0 8(x,,,) d=(s,))

R T 1 ifs<j
b "‘rwhere d_<_‘ ‘(S,J')‘ = | 0 otherwise

As observed in the proof of Theorem 8 the regular trees X are determined by
the values of 6 on the fibers. We call a tree X reduced and say that a reduced regular
f tree-has fype <Tl, o7, > if 7, = 8(x) - 2 where X, is some element of X, Tl and
’12 1mply that th« type is mdependent of the chou.e of xs.
" The color: aigebra of a reduced regular tree will be described below. The
o descrlptlon uses tie notion from [1] of the extension _# [_#] of a rolygroup .# by
: a polygroup A4 The polygroup T is the system whose ploduct table is

| 0 1
010 1
1 (0,13

Theorem 9. Suppose <X, <> is a reduced regular iree with ype < T,..,7,>.

- Then A X) & [ A, [ ]l ]] where for all i 7, = Z, if = = 0 and
A= Tif 1, = L

Proof. Suppose the distinct values of {(xy) for x,yeX are m = € > e >

> e, =0,ie., ¢ = riffi + r = m. Let the universe of A (x) be [0,...,m]

“where i corresponds to R;.  The product * in ~#2(X) is described by the following
~ conditions: :

il

(1) i*j
(2) i

j*i for all i,j
i for all i (because R, is the identity).

@ % = {{0,&-&-—1} if 7 =0

0,..i}if r, = 1 , : fori = |,...,m

il

Suppase ¢, = r and (x,y)eR; where j < i. Let beX, b < x. 6(b) = 2 50 thoose
zeX,, withiz = b. (Note that also yz = b since xyeXmJ and j <i.) Thus, (x,2, (z,y)
€R; and sojei*i in both cases. Now suppose (x,y) eR;and b = xyeX,. Thel there

Cexist zeX | with (x,2), (z,y) € R, iff 6(b) = 3. |

Henca,la*l if 8(x) = =3 but not otherwise,

@) for ijell,...,m] and i 5], i%j = maxli,j}.
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~We suppose i < j and show i%j = j. Suppose (x,¥)eR; where e, = r and
choose b e(x]NX_ ;. Since 5(b)=2 there exist zeX, xz = b, i.e., (x,2)eR;. But
'yz' = Xy since i < j; s0 (z,9)e R; and therefore R ﬂ(R|R) # (. Thus, jei*j.
- Now if (x,y) e R, N(R; IR) there exrst z with (x, z)eR and (z,y)eR;. Then xz > zy
‘ because i < j, xzeX mi and zyeX .. It follows that xy = zy e Xm_) s L.e, (X,¥)eR,. ‘
‘. This shows that if kei%j, then k = j. Thus, i%j=] as desired.
... The stated description of. ///KZ(X) follows from properties (1)~ (4) above and the
product definition in the indicated extension. g

- Figures 1, 2, and 3 illustrate the color algebtas associated with a few simple
regular trees. ‘

- "It would be useful to charactenze weakly regular semilattices by condltlons like

" T1 and T2. Also, is every weakly regular semilattice color equivalent to a- regular

semxlatuce"

lo 1 2 3
0 0 1 2 3
1 1 0 2 3
2 2 2 01 3
3 3 3 3 012

: Color algebra
"Full binary tree of type <0,0,0>
Fig. 1 \

lo 1 2 3
o]0 1 2 3
11 0 2 3
2 2 2 01 3
3 3 3 3 0123

Color alge¢bra

Tree of type <0,0,1>

Fig. 2
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o 1 2 3
olo 1 2 3
1|1 ot 2 3
2 | 2 012 3
313 3 3 0123

Tree of type < 1,1',‘1 > and its color algebra

Fig. 3
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