WEAKLY REGULAR TREES AND THEIR COLOR ALGEBRAS

S. D. Comer (1)
The Citadel, Charleston SC 29409, USA
Iowa State University, Ames IA 50011, USA

ABSTRACT: A finite semilattice X is weakly regular if it admits a length function ℓ such that for all r,s,t $\leq m$

 $\exists x,y,z \in X_m \ [xy \in X_r \land xz \in X_s \land yz \in X_t] \ implies \ \forall x,y \in X_m \ [xy \in X_r \rightarrow \exists z \in X_m \ [xz \in X_s \land yz \in X_t]]$

where $X_i = \{xeX: \ell(x) = i\}$ for all i and m is the maximum value of ℓ . Every regular semilattice is weakly regular. A weakly regular semilattice determines a color scheme using a construction of Delsarte. Two weakly regular semilattices are equivalent if the polygroups (hypergroups) associated with their color schemes are isomorphic. A geometrical characterization of weakly regular trees is given. It is shown that every weakly regular tree is equivalent to a regular tree and the polygroups of these systems are completely determined.

In [3] Delsarte introduced the concept of a regular semilattice and showed how to construct an association scheme from such a semilattice. Association schemes are color schemes in the sense of [2]. We introduce the notion of a weakly regular semilattice and show that Delsarte's construction produces a color scheme $\mathcal{P}(X)$ from a finite semilattice X with a length function if and only if the semilattice is weakly regular. Unfortunately, it is not easy to tell whether a semilattice is weakly regular. It is desirable to characterize weak regularity by conditions of a geometrical nature similar to the conditions used by Delsarte for regularity. In section 2 such conditions are given when the semilattice is a tree. Two weakly regular semilattices X and Y are color equivalent if the color algebras associated with $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ are isomorphic. We show that every weakly regular tree is color equivalent to a regular tree and completely describe the color algebras of regular trees.

For unexplained notation and terminology the reader should consult [2] and [3].

^{1.} Research supported in part by grants from The Citadel Development Foundation and the Consiglio Nazionale delle Ricerche.

1. Weakly Regular Semilattices

A finite poset $\langle X, \leq \rangle$ is a (meet) semilattice if every two points $x, y \in X$ has a greatest lower bound denoted by xy. Let 0 denote the least element of X. A *length function* on a finite semilattice X is a function $\ell: X \to \omega$ such that $\ell(0) = 0$ and for every $x, y \in X$ with x < y there exist $u \in X$ $x < u \leq y$ and $\ell(u) = \ell(x) + 1$. A semilattice admits at most one length function.

The construction below of a relational system $\mathcal{D}(X)$ from a finite semilattice that admits a length function was introduced in [3] as a way to construct association schemes.

Let m denote the maximum value of $\ell(x)$ and define fibers $X_0,...X_m$ by

$$X_i = \{x \in X : \ell(x) = i\}.$$

Let $e_0 = m > e_1 > ... > e_n$ be a list of the distinct values of $\ell(xy)$ for $x, y \in X_m$. For $i \le n$ define the relation $R_i \subseteq X_m^2$ by

$$R_i = \{(x,y) \in X_m^2 : \ell(xy) = e_i\}$$

and set $\mathscr{V}(X) = \langle X_m, R_0, ..., R_n \rangle$.

A binary relational system $(V,R_0,...R_n)$ is a (symmetric) n-color scheme (cf., [2]) if

- (i) $\{R_0,...,R_n\}$ is a partition of $V,R_1 \neq \emptyset$ for all i, and $R_0 = I_v$
- (ii) for all r,s,t $\leq n$, $R_r \cap (R_s | R_t) \neq \emptyset$ implies $R_r \subseteq R_s | R_t$.

Association schemes are color schemes but not every color scheme is an association scheme. Color schemes arise in the study of representations of relations algebras. We want to characterize semilattices X for which $\mathcal{P}(X)$ is a color scheme.

Definition 1. A finite semilattice $\langle X, \leq \rangle$ that admits a length function is weakly regular if for all r,s,t \leq m

(1.1)
$$\exists x, y, z \in X_m [xy \in X_r \land xz \in X_s \land yz \in X_t]$$
 implies $\forall x, y \in X_m [xy \in X_r \rightarrow \exists z \in X_m [xz \in X_s \land yz \in X_t]]$

Because (1.1) is a restatement of (ii) in the definition of color scheme the following characterization is obvious.

Theorem 2. $\mathcal{V}(X)$ is a color scheme if $f < X \le S$ is weakly regular.

To see that Theorem 2 is a weak form of Theorem 7 of [3] we need to see that a regular semilattice is weakly regular.

Definition 3 [3]. A semilattice $\langle X, \leq \rangle$ that admits a length function is *regular* if

- (1) for $y \in X_m$, $z \in X_r$ with $z \le y | \{u \in X_s : z \le u \le y\} | \text{ if a constant } \mu(r,s)$.
- (2) for $u \in X_s$, $|\{z \in X_r : z \le u\}|$ is a constant v(r,s).
- (3) for $a \in X_r$, $y \in X_m$ with $ay \in X_j$ $|[(b,z) \in X_s \times X_m : b \le zy$, $a \le z]|$ is a constant $\pi(j,r,s)$.

Proposition 4. A regular semilattice is weakly regular.

Proof. Suppose $\langle X, \leq \rangle$ is a regular semilattice. Let $D_k \in \mathbb{R}(X_m, X_m)$ denote the adjacency matrix of the graph $\langle X_m, R_k \rangle$, i.e.,

$$D_k(x,y) = \begin{cases} 1 & \text{if } \ell(xy) = e_k \\ 0 & \text{otherwise} \end{cases}$$

The proof of Theorem 7 in [3] that $\langle X_m, R_0, ..., R_n \rangle$ is an association scheme amounts to showing that the vector space generated by $D_0, ..., D_n$ is a multiplicative algebra. In particular, it is shown that

$$D_s D_t = \sum_k p_{st}^k D_k$$

for real numbers p_{st}^k . The hypothesis of condition (1.1) asserts that $(D_sD_t)(x,y) = 1$ and $D_r(x,y) = 1$ for some $x,y \in X_m$. Since $D_r(x,y) = 1$ implies $D_k(x,y) = 0$ for all $k \neq r$, the algebra equation shows that $p_{st}^r > 0$. Now suppose $x,y \in X_m$ with $D_r(x,y) = 1$. Since $p_{st}^r > 0$ and $D_k(x,y) = 0$ for all $k \neq r$, $(D_sD_t)(x,y) > 0$. Thus, there exist $z \in X_m$ with $xz \in X_s$ and $zy \in X_t$ as desired. \square

2. Weakly Regular Trees

A tree is a semilattice $\langle X, \leq \rangle$ such that $(x] = \{y : y \leq x\}$ is well ordered by \leq for all $x \in X$. The goal of this section is to characterize weakly regular trees by conditions similar to 3(1), 3(2) and 3(3).

We assume throughout that $\langle X, \leq \rangle$ is a tree that admits a length function ℓ . For $i \leq m$ let

$$\overline{X}_i = \{x \in X_i : x \le y \text{ for some } y \in X_m\}.$$

Clearly $\overline{X}_m = \underline{X}_m$ and if $x, y \in X_m$ then $xy \in \overline{X}_r$ for $r = \ell(xy)$. Also, if $b \in (x] \cap X_r$ where $x \in X_m$ then $b \in X_r$. For $x \in X_s$ the *outdegree* of x is the number $\delta(x) = |\{y \in \overline{X}_{s+1} : y \ge x\}|$.

Consider the two conditions:

- T1. For $r \le m$, if $\delta(x) = 2$ for some $x \in X_r$ then $\delta(x) = 2$ for every $x \in X_r$.
- T2. For $r \le m$, if $\delta(x) \ge 3$ for some $x \in X_r$, then $\delta(x) \ge 3$ for every $x \in X_r$. We consider two alternatives to T1. Namely,
- T1'. For $r \le m$, $\delta(x) \ge 2$ for some $x \in X_r$ implies $\delta(x) \ge 2$ for all $x \in X_r$.
- T1". For $r \le m$, $\delta(x) = 1$ for some $x \in \overline{X}_r$ implies $\delta(x) = 1$ for all $x \in \overline{X}_r$.

Lemma 5. Suppose X is a tree that admits a length function.

- (1) Condition T1' holds iff condition T1" holds.
- (2) If X satisfies T2, then T1' holds iff T1 holds.

Proof. (1) (\Rightarrow) Suppose $\delta x = 1$ and $\delta y \neq 1$ for some $x, y \in X_r$.

Since $\delta y \ge 1$, it follows that $\delta y \ge 2$ which, by T1', implies that $\delta x \ge 2$ contradicting $\delta x = 1$.

- (\Leftarrow) Suppose $\delta x \ge 2$ for some $x \in X$, and $2 \le \delta y$ for some $y \in X$. Thus, $\delta y = 1$ which implies, by T1", that $\delta x = 1$ contradicting $\delta(x) \ge 2$.
- (2) T1' clearly follows from T1 and T2. For the converse, suppose $\delta x = 2$ for some $x \in X_r$. T1' implies $\delta y \ge 2$ for all $y \in X_r$. If $\delta y > 2$ for some $y \in X_r$, then T2 implies $\delta x > 2$; thus, $\delta y = 2$ for all $y \in X_r$. \square

Conditions T1 and T2 mean that δ is "constant on fibers" for small values.

Theorem 6. A tree $\langle X, \leq \rangle$ is weakly regular iff T1 and T2 hold.

Proof₁ (⇒) Suppose < X, ≤ > is weakly regular. To verify T1′, suppose x, y∈X_s with δ(x) ≥ 2; say x′, x″ ∈X_{s+1} x′x″ = x. Choose x₁, x₂∈X_m extending x′, x″ and observe that x₁x₂ = x ∈X_s. Thus, the hypothesis of (1.1) holds where s = t and r = 0. Choose y₁∈X_m with y₁ ≥ y. Then by (1.1) there exist z∈X_m such that y₁z∈X_s. Since (y₁] is well ordered (y₁] ∩ X_s = {y} and so y₁z = y. The elements y′ and y″ defined by {y′} = (y₁] ∩ X_{s+1} and {y″} = (z] ∩ X_{s+1} are distinct covers of y so δ(y) ≥ 2. This shows that T1′ holds.

To verify T2, suppose, $x_1, y_2 \in X_r$ and $\delta(x) \ge 3$. Hence there exist distinct elements $x_1, x_2, x_3 \in X_m$ such that $x_1 x_2 = x_1 x_3 = x_2 x_3 = x$. By T1' $\delta y \ge 1$ so $y = y_1 y_2$ for some $y_1, y_2 \in X_m$. Applying (1.1) with $y_1 = y_2 = y_3 = x_3 = x_3 = x_3$. Since $y_1 = y_2 = y_3 = x_3 = x_3$

(\in) Assume T1,T2 hold and there exist $x_1, y_1, z_1 \in X_m$ with $x_1 y_1 \in \overline{X}, x_1 z_1 \in \overline{X}_s$ and $y_1 z_1 \in \overline{X}_t$. Suppose $x, y \in X_m$ with $xy \in \overline{X}_t$. We consider cases.

r=s=t=m.

Then k = y and (1.1) obviously holds with z = x. r = m and $s = t \neq m$. Then $x_1 = y_1$ and $\delta(x_1 z_1) \ge 2$. Choose $u \in X_s$ with $u \le x = y$. T1' implies $\delta u \ge 2$. Choose $z' \in X_{s+1}$ with xz' = u and extend z' to $z \in X_m$. Then $xz = yz = u \in X_s$ as desired.

 $r \neq m \text{ and } s > r$.

Because $(z_1]$ is well ordered the unique element in $(z_1] \cap X_s$ is $x_1 z_1$. Similarly $(x_1] \cap X_r = (z_1] \cap X_r = [x_1 y_1]$. Therefore, $z_1 y_1 = x_1 y_1$ so t = r in this case. Now suppose $x_1, y_2 \in X_m$ with $x_2 \in X_r$. Choose $b \in X_s$, $b \le x$. Since $\ell(x_1 z_1) = s$, condition T1 implies there exist $z \in X_m$ with $xz = b \in X_s$. Now, $yz = yx \in X_r = X_t$ as desired.

 $r \neq m$ and r > s.

First, $t \ge s$ follows because $(x_1]$ is well ordered, r > s, $x_1y_1\epsilon X_r$ and $x_1z_1\epsilon X_s$. If $\ell(y_1z_1) = t > s$ then $\overline{X}_{\min\{r,t\}}$ contains an element $\le x_1z_1$ which contradicts $\ell(x_1z_1) = s$; thus t = s. Now suppose $x,y\epsilon X_m$ with $xy\epsilon X_r$ and choose $b\epsilon X_s$ with $b \le x$. Since $\delta(x_1z_1) \ge 2$, $\delta b \ge 2$ so choose $z\epsilon X_m$ with $xz = b\epsilon X_s$. Also, $yz = b\epsilon X_s = \overline{X}$ because x'z' = b where z' is the unique element in $(z] \cap X_{s+1}$ and x' is the unique element in $(x] \cap X_{s+1} = (y] \cap X_{s+1}$.

 $r = s \neq m$ and $t \neq m$ (since t = m is obvious).

In this case x_1, y_1, z_1 are all distinct and $\{x_1y_1\} = (x_1] \cap X_r = \{x_1z_1\} = (y_1] \cap X_r = \{y_1z_1\}$. Therefore t = r and $\delta(x_1y_1) \ge 3$. Hence $\delta(xy) \ge 3$. Choose $z' \in X_{r+1}$ distinct from the elements in $(x] \cap X_{r+1} \cup (y] \cap X_{r+1}$. Then z'x = z'y = xy. Extend z' to $z \in X_m$ to produce the desired conclusion. \square

3. Classification of Weakly Regular Trees

A weakly regular semilattice X can be classified by a multi-valued algebra that indicates how the relations of $\mathcal{D}(X)$ compose. The notion of a color algebra and its properties can be found in [2].

Definition 7. (1) The color algebra of a symmetric n-color scheme $\mathscr{V} = \langle V, R_0, ..., R_n \rangle$ is the system $\mathscr{M}_{\mathscr{D}} = \langle \{0, ..., n\}, *, 0 \rangle$ where, for r,s,t $\in \{0, ..., n\}, *$ is defined by

$$s*t = \{r : R_r \subseteq R_s \mid R_t\}.$$

(2) Two weakly regular semilattices X and Y are (color) equivalent if $\mathcal{M}_{\gamma}(X)$ $\cong \mathcal{M}_{\gamma}(Y)$.

Basically, the color equivalence of X and Y means that the color schemes they determine generate isomorphic algebras of relations (cf., [2]). By Theorems 8 and 9 the color algebras of weakly regular trees are completely described.

Theorem 8. Every weakly regular tree is (color) equivalent to a regular tree.

Proof. Given a weakly regular tree $\langle X, \leq \rangle$ we construct another tree $\langle \hat{X}, \leq \rangle$ by the following procedure.

Step 1: Delete all nodes in $X_r - \overline{X}_r$ for all r to form X'.

In the resulting tree every element in X'_r , $r \neq m$, extends to an element of X'_m , i.e., $\overline{X}'_r = X'_r$.

Step 2: Form the quotient tree $X'' = X'/\approx$ where $x \approx y$ iff (y covers x and $\delta x = 1$) or (x covers y and $\delta y = 1$).

T1" holds in X' by Lemma 5, so X" is obtained by identifying X'_r with X'_{r+1} when some element of X'_r has a unique cover. X" satisfies T1 and T2 because $\delta x \geq 2$ and $x \approx y$ implies x = y. Because $\delta(x) \geq 2$ for every $x \in X''$, not in X''_m , every element in X" has the form yz for some $y, z \in X''_m$

Step 3: For each x, say in X_r'' , with $\delta x = n > 3$ choose distinct x_1, x_2, x_3 in X_{r+1}'' which cover x and replace $[x] = \{y \in X'' : y \ge x\}$ with

$\{x\} \cup [x_1] \cup [x_2] \cup [x_3].$

Let \hat{X} be the resulting tree. Clearly \hat{X} is weakly regular, δx depends only on the fiber that contains x (by T1 and T2) and for every x $\delta x = 2$ or $\delta x = 3$.

Claim 1. X and X are color equivalent.

It suffices to check that each step of the construction of \hat{X} does not effect the color algebra associated with X. Clearly Step 1 and Step 2 does not change $\mathscr{M}_{\mathbb{Q}}(X)$ because we only remove elements that never appear as a product of elements from X_m . To see that Step 3 does not change the color algebra of $\mathscr{D}(X'')$ note that to compute a product in $\mathscr{M}_{\mathbb{Q}}(X'')$ we never need more that 3 elements $x_1, x_2, x_3 \in X_m''$ with $x_1x_2, x_1x_3, x_2x_3 \in X_r''$ and this case occurs only when $R_i \cap (R_i \mid R_i) \neq \emptyset$ with $e_i = r$.

Claim 2. $\langle \hat{X}, \leq \rangle$ is a regular tree.

We need to check (1), (2), and (3) of definition 3.

- (1) Given $y \in \hat{X}_m$, $z \in \hat{X}_r$ with $z \le y$ there is exactly one point $u \in \hat{X}_s$ such that $z \le u \le y$ because (y] is well ordered, ie., $\mu(r,s) = 1$.
 - (2) For similar reasons v(r,s) = 1.
- (3) Given $a \in \hat{X}_r, y \in \hat{X}_m$ with $a y \in X_j$; the value of $\pi(j,r,s)$ depends on the value of δ on the fibers above a. Choose $x_i \in \hat{X}_{m-i}$ then observe that $|\{z \in \hat{X}_m : z \ge a\}| = \delta(x_1) \cdot ... \cdot \delta(x_{m-r})$. For each $z \in \hat{X}_m$ with $z \ge a$, yz = ay. There is only one element $b \in \hat{X}_s$ such that $b \le zy$ if $s \le j$ and no elements if $s \ne j$. Hence

$$\pi(j,r,s) = \delta(x_1) \cdot ... \cdot \delta(x_{m-r}) \cdot d \leq (s,j)$$

where
$$d \le (s,j) = \begin{cases} 1 & \text{if } s \le j \\ 0 & \text{otherwise} \end{cases}$$

As observed in the proof of Theorem 8 the regular trees \hat{X} are determined by the values of δ on the fibers. We call a tree \hat{X} reduced and say that a reduced regular tree has $type < \tau_1, ..., \tau_n > \text{if } \tau_i = \delta(x_i) - 2$ where x_i is some element of X_{m-i} . T1 and T2 imply that the type is independent of the choice of x_i 's.

The color algebra of a reduced regular tree will be described below. The description uses the notion from [1] of the extension $\mathscr{M}[\mathscr{N}]$ of a polygroup \mathscr{M} by a polygroup \mathscr{M} . The polygroup T is the system whose product table is

Theorem 9. Suppose $\langle X, \leq \rangle$ is a reduced regular tree with type $\langle \tau_1, ..., \tau_m \rangle$. Then $\mathcal{M}_Q(X) \cong \mathcal{M}_1[\mathcal{M}_2[...[\mathcal{M}_m]...]]$ where for all $i \mathcal{M}_i = \mathbb{Z}_2$ if $\tau_i = 0$ and $\mathcal{M}_i = T$ if $\tau_i = 1$.

Proof. Suppose the distinct values of $\ell(xy)$ for $x,y \in X_m$ are $m = e_0 > e_i > ... > e_m = 0$, i.e., $e_i = r$ iff i + r = m. Let the universe of $\mathscr{M}_{\mathcal{O}(X)}$ be $\{0,...,m\}$ where i corresponds to R_i . The product * in $\mathscr{M}_{\mathcal{O}(X)}$ is described by the following conditions:

- (1) i*j = j*i for all i,j
- (2) 0*i = i for all i (because R_0 is the identity).

(3)
$$i*i = \begin{cases} \{0,...,i-1\} & \text{if } \tau_i = 0 \\ \{0,...,i\} & \text{if } \tau_i = 1 \end{cases}$$
 for $i = 1,...,m$

Suppose $e_i = r$ and $(x,y) \epsilon R_j$ where j < i. Let $b \epsilon X_r$, $b \le x$. $\delta(b) \ge 2$ so phoose $z \epsilon X_m$ with $\epsilon z = b$. (Note that also yz = b since $xy \epsilon X_{m-j}$ and j < i.) Thus, (x,z), $(z,y) \epsilon R_i$ and so $j \epsilon i * i$ in both cases. Now suppose $(x,y) \epsilon R_i$ and $b = xy \epsilon X_r$. Then there exist $z \epsilon X_m$ with (x,z), $(z,y) \epsilon R_i$ iff $\delta(b) \ge 3$.

Hence iei*i if $\delta(x_i) = 3$ but not otherwise.

(4) for $i, j \in \{1, ..., m\}$ and $i \neq j$, $i \neq j = \max\{i, j\}$.

We suppose i < j and show i * j = j. Suppose $(x,y) \in R_j$ where $e_j = r$ and choose $b \in (x] \cap X_{m-i}$. Since $\delta(b) \ge 2$ there exist $z \in X_m$ xz = b, i.e., $(x,z) \in R_j$. But yz = xy since i < j; so $(z,y) \in R_j$ and therefore $R_j \cap (R_i | R_j) \ne \emptyset$. Thus, $j \in i * j$. Now if $(x,y) \in R_k \cap (R_i | R_j)$ there exist z with $(x,z) \in R_i$ and $(z,y) \in R_j$. Then xz > zy because i < j, $xz \in X_{m-i}$ and $zy \in X_{m-j}$. It follows that $xy = zy \in X_{m-j}$, i.e., $(x,y) \in R_j$. This shows that if $k \in i * j$, then k = j. Thus, i * j = j as desired.

The stated description of $\mathcal{M}_{\mathcal{O}(X)}$ follows from properties (1)-(4) above and the product definition in the indicated extension.

Figures 1, 2, and 3 illustrate the color algebras associated with a few simple regular trees.

It would be useful to characterize weakly regular semilattices by conditions like T1 and T2. Also, is every weakly regular semilattice color equivalent to a regular semilattice?

Full binary tree of type <0.0,0>

Fig. 1

Color algebra

Tree of type <0.0,1>

Fig. 2

Tree of type <1,1,1> and its color algebra

3

3

0123

3

3

Fig. 3

References

- [1] COMER, S.D. Extensions of Polygroups by Polygroups and their Representations using Color Schemes. In, *Universal Algebra and Lattice Theory*. Lecture Notes in Math., no. 1004, 1983, pp. 91-103
- [2] COMER, S. D. Combinatorial Aspects of Relations. Algebra Universalis 18 (1984), pp. 77-94.
- [3] Delsarte P. Association Schemes and t-Designs in Regular Semilattices. J. Combinatorial Theory, Ser. A 20(1976), 230-243.