Mailbox

A remark on representable positive cylindric algebras

STEPHEN D. COMER¹

A positive cylindric algebra is a positive reduct of a CA, i.e., an algebra, denoted $\mathfrak{R}\mathfrak{d}_+\mathfrak{A}$, obtained from a cylindric algebra \mathfrak{A} by discarding the complementation operation from the fundamental operations of \mathfrak{A} . Let $\mathfrak{A}(\alpha, U)$ denote the full cylindric set algebra with base U and dimension α . In analogy with definitions for cylindric algebras we define the class Cs_{α}^+ of positive set algebras of dimension α as $Cs_{\alpha}^+ = S\{\mathfrak{R}\mathfrak{d}_+\mathfrak{A}: \mathfrak{A} \in Cs_{\alpha}\}$ ($=S\{\mathfrak{R}\mathfrak{d}_+\mathfrak{A}(\alpha, U): U \neq \emptyset\}$) and the class RCA_{α}^+ of representable positive cylindric algebras of dimension α as $RCA_{\alpha}^+ = SP(Cs_{\alpha}^+)$.

Representable positive cylindric algebras arise in a natural way in the study of databases, cf., [1], [3]. In this note we observe that the nonfinite axiomatizability of RCA_{α} , for $\alpha \geq 3$, established by Monk [5] (cf., section 4.1 of [3]), extends to RCA_{α}^+ . This answers a question posed to the author by W. Lipski in 1983.

LEMMA 1. Suppose \mathfrak{A} and \mathfrak{B} are CA_{α} 's.

- (i) If f is a homomorphism of $\mathfrak{Rd}_+\mathfrak{A}$ into $\mathfrak{Rd}_+\mathfrak{B}$, then $f:\mathfrak{A}\to\mathfrak{B}$ is a CA_α -homomorphism.
- (ii) $\Re \mathfrak{d}_+ \mathfrak{A} \in RCA_{\alpha}^+$ if and only if $\mathfrak{A} \in RCA_{\alpha}$.

Proof. (i) is obvious since -x is uniquely determined in $\mathfrak{Rb}_+\mathfrak{A}$ by the equations x + -x = 1 and $x \cdot -x = 0$.

(ii) For the implication \Rightarrow , by 2.4.39 of [2], it suffices to show, for $a \in A$, $a \neq 0$, there exist a set $U \neq \emptyset$ and a homomorphism $f: \mathfrak{A} \to \mathfrak{A}(\alpha, U)$ with $fa \neq \emptyset$. Since $\mathfrak{Rb}_+\mathfrak{A}$ is a subdirect product of positive set algebras, there exist U and $f: \mathfrak{Rb}_+\mathfrak{A} \to \mathfrak{Rb}_+\mathfrak{A}(\alpha, U)$ with $fa \neq \emptyset$. The conclusion follows from (i). The reverse implication \Leftarrow is obvious.

THEOREM 2.

- (i) RCA_{α}^{+} is a universal class for all α .
- (ii) For $\alpha \geq 3$ RCA $_{\alpha}^{+}$ is not finitely scheme axiomatizable.

Presented by Bjarni Jónsson.

Received April 10, 1989 and in final form September 25, 1989.

¹Work supported in part by a grant from The Citadel Development Foundation.

- *Proof.* (i) Since $RCA_{\alpha}^{+} = SP(\mathfrak{Rb}_{+} Cs_{\alpha}) = S\mathfrak{Rb}_{+} (PCs_{\alpha}) = S\mathfrak{Rb}_{+} (RCA_{\alpha})$ and RCA_{α} is an equational class, it follows from Theorem 1.9 of [6] that RCA_{α}^{+} is a universal class.
- (ii) First assume $3 \le \alpha < \omega$. By the proof of Theorem 1.11 of [5] (or, 4.1.3 of [3]) there exist CA_{α} 's \mathfrak{A}_{κ} ($\kappa \in \omega$) such that $\mathfrak{A}_{\kappa} \notin RCA_{\alpha}$ and $\prod_{\kappa \in \omega} \mathfrak{A}_{\kappa}/D$ is in RCA_{α} for a nonprincipal ultrafilter D on ω . By 1(ii), $\mathfrak{Rb}_{+}\mathfrak{A}_{\kappa} \notin RCA_{\alpha}^{+}$, but $\prod_{\kappa \in \omega} \mathfrak{Rb}_{+}\mathfrak{A}_{\kappa}/D = \mathfrak{Rb}_{+}(\prod_{\kappa \in \omega} \mathfrak{A}_{\kappa}/D)$ is in RCA_{α}^{+} . The nonfinite axiomatizability follows. The proof for $\alpha \ge \omega$ is similar using Theorem 2.2 of [5] (or 4.1.7 of [3]).

Similar results hold for positive reducts of polyadic algebras. More generally, if the class of cylindric or polyadic algebras is enriched by definable operations, for example the inner cylindrifications C_i^{∂} (cf., [2], 1.4.1), the results hold for the positive reducts of these classes as well.

REFERENCES

- [1] COSMADAKIS, S. S., Database theory and cylindric lattices (extended abstract). Foundations of Computer Science (Proc. 1987 Conference), IEEE Computer Soc.
- [2] HENKIN, L., MONK, J. D. and TARSKI, A., Cylindric Algebras. Part I. North-Holland, Amsterdam, 1971.
- [3] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Part II. North-Holland, Amsterdam, 1985.
- [4] IMIELINSKI, T. and LIPSKI, W., The relational model of data and cylindric algebras. J. Comput. System Sci. 28 (1984), 80-103.
- [5] Monk, J. D., Nonfinitizability of classes of representable cylindric algebras. J. Symbolic Logic 34 (1969), 331-343.
- [6] TARSKI, A., Contributions to the theory of models II. Indagationes Mathematicae 16 (1954), 582-588.

The Citadel
Dept. of Mathematics and Computer Science
Charleston, SC 29409
USA