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WORLD SCIENTIFIC :

SOME PROBLEMS ON HYPERGROUPS!

Stephen D. Comer
The Citadel
Charleston, SC 29409, U.S.A.

This paper describes a few open problems concerning special classes of
hypergroups. Solutions to these problems would not only provide valuable insight
into the structure of hypergroups, but also strengthen the connections between
hypergroups and other mathematical structures. This survey is not intended to be
comprehensive, but, instead, to reflect the main areas of interest of the author.
Other aspects of the theory of hypergroups will be adequately treated in
contributions by other authors. We will mainly deal with hypergroups that are very
close to ordinary groups, namely, with polygroups ([6}). We recall that a polygroup
i[s ]the same as a quasi—canonical hypergroup in the sense of Bonansinga and Corsini
5].

1. SPECIAL CLASSES

Hypergroups éand polygroups) arose from attempts to isolate and clarify ideas
from topology and group theory.  More recently connections have developed with
combinatorics and algebraic logic. Some of the algebras and classes of algebras that
naturally arise are described below.

Double Coset Algebras

For a group G and a subgroup H of G, the polygroup of all double cosets of H in
G ([12],[6]% is denoted by G//H. The class of all polygroups isomorphic to such
systems is denoted DBCOSET(Group). Actually, the same construction works for any
class of hypergroups, not just groups. Thus, DBCOSET can be regarded as an
operation on classes of hypergroups.
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Color Algebras

Let C be a nonempty set (think of the elements of C as colors), 06C, and ! an
involution of C that fixes 0, i.e., 0"t = 0. A C—color scheme is a relational system

V= <V’Ra>aEC where each Ra is a binary relation on V that satisfies

(1) {R,: a€C} is a partition of V2 and Ry ={(xx) : xeV }
(2) Ry,= R, (the converse of R ), and
(3)  for every a,b,ceC, R.N(R,|Ry) # ¢ implies R, CR [Ry.

A more general scheme that satisfies only (1) and (2) is called a chromatic geometry
{or rainbow) in Ashbacher [1].
The color algebra of a C—color scheme V = <V’Ra>

= <C,x,0> where for a,b € C,
axb = {ceC: R ¢ R, IRy }.
Let croum denote the class of all polygroups isomorphic to a color algebra MV for

2€C is the polygroup MV

some scheme V.

Association Schemes

An association scheme (Bannai and Ito [3]) is a color scheme <V.R,>. ¢
that satisfies
@ p=1{zV: (x2)eR, and (zy)eRy }| is independent of (x,y)eR, for
every a,b,c € C and x,yeV.

Association schemes are necessarily finite systems. Let aSS¥ denote the class of all
polygroups isomorphic to the color algebra of an association scheme. These color
algebr[a]s are closely related to the notion of a Table Algebra defined in Arad and
Blau [2].

Double Quotients

The formation of the polygroup G//H is a type of quotient construction. This
generalizes as follows: A confugacy relation on a polygroup M is an equivalence
relation ¢ such that for all x,y,z,x’eM

(5)  x0y implies x1fy-1, and
(6) 2’ 0zex-y implies z’€x’ -y’ for some x’ fx and y’fy.

A conjugacy relation on a polygroup M induces a (double) quotient polygroup
M[[0= <{0x:xeM },*,0e> where 0x = { yeM :yfx } and

Ox+ 0y = { 0z : ze(6x)(0y) }.

The construction of M//0 not only generalizes that of a double coset algebra but
also the construction that makes a hypergroup from the conjugacy classes of a
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group. Let Q2(K) denote the class of all systems isomorphic to algebras M//0 for
M ¢ K and 0 a conjugacy relation on M. A conjugacy relation .0 that satisfies

xfe = x=¢

(recall that e is the unique scalar identity) is called a special conjugacy relation and
the class of corresponding special quotients of systems in K is denoted QX).

Problem 1. Give characterizations of the classes CHRoM, ASSN, Q2% Group), and
DBCOSET(Group).

It is known that Group ¢ pBCOSET(Group) ¢ Q2(Group) C CHROM and that
FinnQ2(Group) ¢ Q2(assy) C FinnckroM where Fin denotes the class of finite
systems.

Problem 2. Can any of the inclusions C above be replaced by equality?

Versions of the problems above also need to be investigated for commutative
polygroups ( x-y = y-x ) and symmetric polygroups ( x1 = x for all x ). Also,

Problem 3. Find a reasonable notion of cyclic polygroup and Abelian polygroup
which extend results from group theory.

There have been several attempt to formulate a suitable notion of Abelian
association scheme. Ferguson and Turull [13] define a commutative association
scheme to be Abelian if

0
Pjj-1 = 1

for all ieC. Unfortunately, the color algebras associated with their notion are just
ordinary Abelian groups. Arad and Blau [2] have generalized the notion of Abelian
group to Table Algebras by abstracting the idea that a group is Abelian exactly
when all of its conjugacy classes are trivial. A third approach would be to regard a
cyclic polygroup as one that is the color scheme of a P—polynomial association
scheme (cf., [3], Chapter 3). In such an association scheme the adjacency matrix of
the i~th relation R; is obtained from the adjacency matrix of the first relation R4
by a polynomial of degree i. Since P—polynomial schemes correspond to distance
regular graphs <V,R;>, there is a hope that the corresponding color algebras can
be completely classified.

2. EXTENSIONS AND DECOMPOSITIONS

It is useful to decompose systems into "simpler" ones. There are several
product operations available for decomposing hypergroups. First, there is the
standard direct product of hypergroups. The classes of all polygroups, CHROM,
Q2Group), and DBCOSETE_Group are closed under direct products and ASsy is closed
under the formation of finite direct products(cf., Comer [8], Ferguson and Turull

[13]).
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A second product notion is that of the wreath product A[B] of a polygroup A by
a polygroup B introduced in [7]. (Also, see Ashbacher [1] for an extension to
chromatic geometries.) In [11] de Salvo introduced a family of extensions, called
(H,G)—hypergroups, of a hypergroup H by a group G. De Salvo’s construction still
works when the group G is replaced by a polygroup. Unfortunately, none of the
(H,G)-hypergroups that are produced when the construction is applied to
polygroups H and G are polygroups except the wreath product H[G]. The classes of
all polygroups, CiroM, Q2(Group), and pBCOSET(Group) are all closed under wreath
products [8].

Each construction mentioned above gives an eztension P of A by B in the sense
that A is a subsystem of P and that P//A v B.

Problem 4. Determine all polygroup extensions P of a polygroup A by a polygroup
B. In particular, determine all extensions when A and B are restricted to one of
the special classes: Group, DBCOSET(Group), ASSN, O CHROM.

A desirable description should extend the one that is known when A and B are
both groups (Hall [16], Chapter 15). In this regard, the work of Sureau [21] and
Vougiouklis [22] is relevant. Sureau studied extensions of a hypergroup A by a
group B that are obtained as a semidirect product A xTB relative to a group

homomorphism 7:B — Aut(A). Using the fundamental equivalence relation ﬂﬁ
on a hypergroup B, Vougiouklis introduced a semidirect product A xTB of two
hypergroups A and B relative to a group homomorphism 7 B/ﬁl’g — Aut(A). It

should be observed that the notion of extension used in Problem 4 depends on the
double coset construction, not the usual coset construction. Of course, the two
notions coincide when applied to a normal subsystem.

Suppose EXT(A,B) denotes the class of all isomorphism types of extensions of
A by B (cf., [21]).

Problem 5. Does EXT(A,B)} have any type of structure?

Problem 6. Develop a reasonable decomposition theory for special classes of
polygroups where the indecomposable factors cannot be decomposed by direct
products, wreath products, or semidirect products.

The work by Ashbacher [1] on symmetric edge transitive chromatic geometries
may provide a clue.

3. d-VARIETIES

For a class K of hypergroups, let S(K) denote the class of all hypergroups
isomorphic to a subhypergroup of a member of K and let P(K) denote the class of
all hypergroups isomorphic to a direct product of members of K. A class K of
hypergroups is a d—wvariety if S(K) = K, Q%K) = K, and P(K) = K. The class
Q2SP(K) is the smallest d—variety that contains a class K. The collection of all
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d—varieties contained in a given d-variety forms a complete lattice .%4. Many
interesting clagses of hypergroups are d—varieties, eg., the class of all polygroups,
crrom, and Q2 Group) = Q2SP(Group).

Problem 7. What is the structure of the lattice .4?

Let T = <{0,1},v*> where V* is the operation defined by the table

VKo 1
0 0 1
1 1 0,1

It is easy to show that Q2SP(T) is the only atom of .%4. What are the covers of
this d—variety? Also, .4 contains a countable antichain, namely, the d—varieties
Q2SP(I,) where p is a prime. Do these d—varieties cover Q2S5P(T)?

Problem 8. Find a syntactic notion of "identity" corresponding to the notion of
d—variety, i.e., a notion of "identity" whose equational classes are exactly the
d—varieties.

It is likely that the notion of "identity" will be a type of Horn formulae (cf.,
Schweigert [20]). The "identities" should be expressed in a functional language and
properties such as the associative law, expressed naturally as x-(y-z) = (x-y)-z,
should be "identities".

4. CONJUGACY LATTICES

The notion of a conjugacy relation arises naturally in the study of special
polygroups. Special conjugacy relations are exacily the kernels of morphisms
resulting from the dual equivalence between polygroups and complete atomic
integral relation algebras ([6]). When the notion of homomorphism between
commutative association schemes ([13]) is lifted to the corresponding color algebras,
the kernels of the resulting maps are conjugacy relations. The collection of all
conjugacy relations on a polygroup M forms a complete lattice, denoted Conj(M),
and the class of all special conjugacy relations on M, denoted Conjs(M), is a
principal ideal (hence sublattice) of Conj(M).

Problem 9(a). Does the lattice Conj(G) of a finite group G determine G?
(b).  Does Conjs(G) determine G when G is a finite group with |G| > 67

The reason for the restriction in Problem 9(b) is that Conjs(Zs) ¥ Conjs(Zs).
Problem 9 is also open for infinite groups. For finite Abelian groups the problem
reduces to the groups I, for p prime (Comer [10]).
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Problem 10. Compute the number n(p) of elements in Conjs(Zp) that are
simultaneously atoms and dual atoms of the lattice. Does this number determine p
if p is a prime > 117

It is known that n(5) =1, n(7) = 2, n(11) = 11, n(13) = 24, and n(p) > p-1
for all primes p > 11.

5. AXIOMATIZABILITY PROBLEMS

In [14] Haddad and Sureau showed that the class of all D—hypergroups is not an
elementary class (in the language of a 3—place relation) and that the first—order
theory of D-hypergroups is not finitely axiomatizable. In [15] cogroups were
constructed that are not of Utumi type, i.e., they are not obtainable from a
D-~hypergroup H by defining a new operation * on H as x*y = x-0y where fis an
Utumi partition on H. The class of cogroups of Utumi type can be characterized
using multipliers ([15]).

Problem 11(a). Find a reasonable set of axioms (necessarily infinite) for the
elementary theory of D—hypergroups.

(b). Isthe class of cogroups of Utumi type an elementary class? Is its elementary
theory finitely axiomatizable over the theory of D—hypergroups?

Three techniques are known for constructing cogroups: the D-hypergroup
construction, the Utumi construction, and the Haddad/Sureau construction. Is this
enough? Two forms of this question are given below.

Problem 12(a). Find a collection of constructions which allows one to determine all
finite) cogroups from groups.
b). Is every weak cogroup equivalent to a cogroup of Utumi type?

To understand (b) we need to recall some notation from [9]. On a weak cogroup
H (also, called a hypergroup of type C in [14]) an equivalence relation % can be
defined by '

XNy & xre=y-e

(eis the left scalar identity of H). The collection of all s—equivalence classes H/w
is a polygroup with the natural operations. Every such polygroup is in cxroM and
every polygroup in Q% Group) has this form (cf., [}é]) Two weak cogroups H and K
are called equivalent if H/~is isomorphic to K/x. Problem 12(b) ask for a
characterization of cogroups up to (polygroup) equivalence.

Problem 13. Is DpBcoSET(Group) an elementary class? Is every finite model of its
theory isomorphic to a double coset algebra?

If Fis a field and G <« F* (= the multiplicative group of a field F), the factor
hyperring F/G gives a hyperfield called a quotient hyperfield (Krasner [18]).
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Massouros [19] showed there exist hyperfields not isomorphic to quotient
hyperfields.

Problem 14. Is the class of quotient hyperfields an elementary class?

6. ORDERED HYPER-STRUCTURES

The classical development of Sentential Logic is based on the three operations
A, V, and - whose tables are as follows:

Al o0 1 v | 0o 1 A |
0 0 0 0 0 1 0 1
1 0 1 1 1 1 1 0

What if the V operation is replaced by V* defined in Section 37

Problem 15. Develop a Sentential hyper—logic based on the operations A, V¥ and -.
That is, axiomatize the logic and investigate properties such as the deduction
theorem and functional completeness.

Since Boolean algebras provide an algebraic analog of Sentential logic, Boolean
hyper—algebras, studied by Konstantinidou and Mittas [17], should be the algebraic
inal(;g to Sentential hyper—logic. Does a form of the Stone represemtation result

old?2

What about algebraic versions of non—classical logics? For example, a Heyting
algebra <L,V,A,0,1»> is a bounded lattice <L,V,A,0,1> such that for all a,bel
{x€L:aAx < b } contains a greatest element a-b, called the relative
pseudo—complement of a in b ([4], Chapter 2,§11). The existence of a-+b for every
a,beL implies that L is distributive. What if we weaken the uniqueness of the
relative pseudo—complement? Let us say that a system <L, V,A,0,1,+> is a Heyting
hyper—algebra if <L,V,A,0,1> is a bounded lattice and for all a,beL the set
{ %€l : aAx < b } contains maximal elements, the set of which is denoted by a-+b.

Problem 16. How much of the theory of Heyting algebras carries over to Heyting
hyper—algebras and is there an analogous version of "Intuitionistic hyper—logic"?
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